resistance and a lack of predictive biomarkers means that matching the best treatment options to patients is difficult. This study aims to characterise the extent of spatial and temporal ITH in advanced stage HGSOC at presentation and relapse.

Methodology Patients (n=49) having maximal effort upfront-debulking surgery for advanced HGSOC underwent a tumour mapping of their tumour dissemination patterns. Tumour biopsies were collected (range 4-15, median 9), when relapsed patients also had paired biopsies collected for genomic and phenotypic analysis. DNA was extracted from tumours (5 per patient, n=49 patients plus relapse samples) and Illumina Human OmniExpress genotyping performed. Allele-specific copy number (CN) was quantified using ASCAT. Genomic heterogeneity was quantified as the estimated number of CN aberration events distinct between each pair of tumour deposits. Clonal diversity within a patient’s deposits was calculated using the difference between within-patient and between-patient heterogeneity. Ki67 proliferation index was observed from tumour sections collected prior to DNA extraction.

Result(s) Extensive genomic variations in patterns of evolution for different patients’ tumours was observed, including the relationship between matched primary tumours and relapsed disease. Widespread variations in CCNE1, MYC and PTEN CN were observed across multiple disseminated tumours in the same patients, and higher CCNE1 correlated with poor patient outcome (p=0.038). Extensive heterogeneity in Ki67 proliferation index was observed across the cohort, 77% of patients had tumour scores covering low, moderate and/or high Ki67 scoring categories.

Conclusion Broad ITH was observed at the genomic level across this cohort. Extensive CN variations in genes such as CCNE1, across multiple disseminated samples within patients, and widespread variations in proliferative index between multi-site tumours, indicates that a single tumour biopsy does not accurately depict disseminated HGSOC biology, and therefore should not be used for as a basis for prediction of patient prognosis or outcomes.

RADIOMICS AND MOLECULAR CLASSIFICATION IN ENDOMETRIAL CANCER (THE ROME STUDY): A STEP FORWARD TO A SIMPLIFIED PRECISION MEDICINE

1G Bogani*, 2L Castiglioni, 3V Chiappa, 4F Raspagliesi*, 5Istituto Nazionale dei Tumori | Fondazione IRCCS, Milano, Italy; 6Building U6 – University of Milano-Bicocca, Milano, Italy

10.1136/ijgc-2021-ESGO.591

Introduction/Background Molecular/genomic profiling is the most accurate method to assess prognosis of endometrial cancer patients. Similarly, the adoption of radiomics showed important results for screening, diagnosis and prognosis, across various radiological systems and oncologic specialties. Here, we aim to correlate radiomic features obtained from ultrasound images with the molecular/genomic profiling to identify new hallmarks for stratification of endometrial cancer patients into different classes of risk.

Methodology This prospective single-arm observational study Patients with newly diagnosed endometrial cancer will have ultrasonographic evaluation and radiomic analysis of the ultrasonographic images. Then patients will have surgery followed by molecular/genomic evaluation. We will correlate radiomic features with molecular/genomic profiling to classify prognosis. Major Inclusion/Exclusion Criteria : Consecutive patients (aged 18 years or more) with newly diagnosed endometrial cancer. Patients should have preoperative ultrasonographic evaluation followed by surgery.

Result(s) The central hypothesis is that combining radiomic features with molecular features might allow identifying various classes of risk for endometrial cancer, e.g. predicting unfavorable molecular/genomic profiling. The rationale for the proposed research is that once validated, radiomics applied to ultrasonographic images would be an effective, innovative and cheap method for tailor operative and postoperative treatment modality in endometrial cancer. Primary Endpoint : The main endpoints will: (i) to define the mechanism by which radiomic features predict the classification of endometrial cancer into various classes of risk e.g. predicting unfavorable molecular/genomic profiling as defined by molecular classification; (ii) to determine the scaled impact of radiomic features assessed on ultrasonographic images of endometrial tumors; and (iii) to assess the intraobserver and interobserver reproducibility of radiomic features on ultrasonographic images of endometrial tumors. Overall, 100 patients for study cohort and 40 for the validation cohort.

Conclusion We expect that the radiomic analysis of ultrasonographic images by means of radiomic classifier of risks will provide comparable results to molecular/genomic. (Trial Registration: GR-2019-12370566 Bando per la Ricerca Finalizzata 2019, Ministero della 24 Salute, Repubblica Italiana)

RAD51 RING TRIAL: A EUROPEAN INTERLABORATORY ANALYTICAL VALIDATION TO DETERMINE THE ROBUSTNESS OF RAD51 AS A BIOMARKER FOR HOMOLOGOUS RECOMBINATION

1C Kramer*, 2A Llop-Guevara, 3E Yaniz-Galende, 4P Bellogrino, 5N Ter Haar, 6N Campanini, 7A Musolinò, 8A Leary, 9M Vreeswijk, 10V Sera, 11T Bosse. 1Leiden University Medical Center (LUMC), Pathology, Leiden, Netherlands; 2VHIO Vall d’Hebron Institut d’Oncologia, Experimental Therapeutics Group, Barcelona, Spain; 3Hospital Gustave Roussy, Oncological Medicine, Villejuif, France; 4University Hospital of Parma, Medical Oncology and Breast Unit, Medicine , Parma, Italy; 5Leiden University Medical Center (LUMC), Human Genetics , Leiden, Netherlands

10.1136/ijgc-2021-ESGO.592

Introduction/Background RAD51 protein has been proposed as a functional readout of homologous recombination (HR) status using formalin-fixed paraffin embedded (FFPE) tumour tissue blocks. Recently, few laboratories have assessed the performance of RAD51 as a predictive biomarker. However, the robustness of the test when applied in different laboratories has not been systematically investigated so far. In this study, we performed an interlaboratory (n = 4) analytical validation to determine the interobserver variability and the effect of (subtle) differences in the co-immunofluorescence (co-IF) protocol and microscope technicalities on RAD51 scores.

Methodology The RING trial cohort comprised of 12 high-grade serous ovarian cancer cases. On unstained serial sections of FFPE tumour tissue blocks, a co-IF staining with RAD51 and geminin was performed: (1) centrally in Vall d’Hebron Institute of Oncology and (2) locally in participating centers. The centrally stained slides were distributed among...