ELDERLY WOMEN’S EXPERIENCES OF SELF-SAMPLING FOR HPV TESTING

R. Hermansson*, M. Olsson, C. Gustavsson, A. Lindstrom. Uppsala University, Uppsala, Sweden

Introduction/Background* Self-sampling for Human Papillomavirus (HPV) testing, as an alternative to the conventional speculum-based sampling, is highly acceptable to women of screening ages. The aim of this study was to describe older women’s (60 to 75 years) experiences of self-sampling.

Methodology In Sweden a descriptive study with quantitative and qualitative methods was designed to collect data from a survey of women who participated in self-sampling for HPV testing at home. Individual interviews were done with women who tested positive in the first self-sampling, and were either negative in their second HPV test or were positive in their second HPV test, but without precancerous lesions or cancer.

Results* Of eligible women, 97.2% answered the survey. Among the surveyed women, 49.2% reported it was very easy to perform self-sampling, 46.8% answered it was easy and 2.0% answered it was not easy. A majority (58.9%) answered that they prefer self-sampling, 16.5% that they prefer sample collection by a healthcare provider, 23.7% did not have any preference and 0.9% did not answer the question. In the interviews, 13 of 16 invited women participated. Most of them reported that they prefer self-sampling because it was easy to perform, less embarrassing and less time consuming than a visit to a clinic. The majority of women reported that they were not worried when informed about having an HPV positive test. Participating women with better knowledge about the significance of an HPV infection were more worried about having a positive HPV test.

Conclusion* Cervical cancer remains a highly preventable disease through screening and early treatment. Our results indicated that vaginal self-sampling for HPV testing was a well-accepted method for cervical cancer prevention in this group of older women.

EFFICACY OF HPV GENOTYPING AND SIMULTANEOUS CYTOLOGICAL EVALUATION IN CENTRAL BLACK SEA REGION OF TURKEY

1,2BTatar*; 1Samsun Training and Research Hospital, Gynecologic Oncology, Samsun, Turkey; 2Dr Burak Tatar Clinic, Samsun, Turkey

Introduction/Background* The distribution of human papillomavirus (HPV) varies geographically, and each country is making its own screening and vaccination program. This study questioned the need for colposcopy for HPV types other than HPV 16 and 18, and the need for cytology incorporated into HPV testing.

Methodology 1043 consecutive patients referred from August 2017 to November 2019 for colposcopy are included in the study. For statistical analysis, logistic regression analysis, ANOVA and Pearson’s correlation was used. The value of p <0.05 was considered statistically significant.

Results* HPV 16 was the most common HPV type referred, followed by HPV 18, 52, 51 and 31, respectively. HPV 16 tends to be positive in younger patients than other HPV types (p<0.05). For all HPV positive patients with cytological abnormality, only HSIL cytology increased the risk of CIN 2+ lesions (OR:5.7, 1.1-29.6 95%CI) (p<0.05). 19% of the CIN 2+ lesions were detected in patients without HPV 16 and 18 infection (cytology and double other high-risk HPV positivity). Only HPV 16 (OR: 1.25, 0.9-2.2 95% CI) and HPV 33 (OR:2.76; 1.18-6.49 95% CI) (p<0.05) has been predication for CIN 2+ lesions. In patients with only a cytological abnormality or double other hr HPV positivity but without HPV 16 and 18 infection, we detected 159 (19%) CIN 2+ lesions.

Conclusion* HPV 33 may be implemented in high-risk HPV screening protocols for direct colposcopy referral among HPV 16 and HPV 18 in specific regions. If we had been opted HPV-based screening for only HPV 16 and 18 without cytology, 19% of all CIN 2+ lesions would have been missed. HPV based screening only with HPV 16 and 18 does not seem to be feasible. Nonavalent vaccines may be considered for vaccination for this specific sub-population.

CAN GENETICS ANALYSIS OF KARYOTYPE HELP US TO PREDICT CANCER IN ANY PATIENTS BEFORE ANY SYMPTOMS? LET’S SEE OUR OBSERVATION IN OUR CASES

1V Kriscic*, 2B Jovic Pivac, 3J Kriscic. 1GAK Narodni Front, Obgyn, Belgrade, Serbia; 2Military Academy of Belgrade, Chiurgico, Belgrade, Serbia

Introduction/Background* One in 1000 to one in 1500 pregnancies are complicated by cancer. We would like to show...
three cases in our institution how we discover cancer in pregnancy, although patients did not have any symptoms before pregnancy.

Methodology CASES 1: 29-year-old women, healthy women in 10 weeks gestation did Prenatal test, Livia, and they could not do analysis because they could not extract fetal blood. All her laboratory and pregnancy were in normal limit. CASE 2: 33-year-old pregnant women in 10 weeks of gestation did Prenatal test, Veracity, and laboratory could not extract fetal blood. She was healthy with previous laparoscopic operation due endometriosis on the left side on ovaria. CASE 3: 42-year-old pregnant women in 10 weeks of gestation did Prenatal test, NIFTY, and laboratory could not extract fetal blood. In previous history she had operation of breast cancer and hemotherapy 4 years ago.

Result(s)* CASE 1 Patient at 36 weeks of gestation patient had big palpable mass on site liver and we performed, Caesarean Section and discovered carcinoma of colon sigmoid with multiple metastasis in abdomen. The newborn was in good condition and she lived one year later. CASE 2 Patient at 33 weeks of gestation patient had pain in her legs. Detail examination showed changes on all bones suspected on metastatic changes. We performed Caesarean Section, and we found Kruekenberg’s tumor with multiple metastasis in abdomen. The newborn was healthy and she lived for one month later. CASE 3 Patient at 16 weeks of gestation patient had pain in abdomen. We did an open laparotomy and found colon cancer with meta changes in abdomen. Caesarean Section was performed in 33 weeks of gestation. Two newborns were healthy and she is alive.

Conclusion* Patients were healthy before pregnancy and Prenatal tests showed large changes in their karyotypes in terms of multiple mitoses. At the time of obtaining the results, neither the patients nor the doctors suspected they have cancer. Our conclusion is that changes in the karyotype, as in these cases, could be the first indicator that there is cancer in the body. Could analysis of karyotype single out the risk population and be gold standard to look for cancer before the onset of symptoms?