A DIAGNOSIS OF INFLAMMATORY MYOFIBROBLASTIC TUMOUR FOLLOWING LAPAROSCOPIC MYOMECTOMY WITH MORCELLATION: A CASE REPORT AND REVIEW OF THE LITERATURE

KW Lee*, ZY Ng, SM Marsor, IM Aggarwal. KK Women’s and Children’s Hospital, Obstetrics and Gynaecology, Singapore; KK Women’s and Children’s Hospital, Gynaecological Oncology, Singapore; KK Women’s and Children’s Hospital, Pathology and Laboratory Medicine, Singapore

10.1136/ijgc-2021-ESGO.170

Introduction/Background* Inflammatory myofibroblastic tumours (IMT) are rare spindle cell neoplasms of indeterminate malignant potential, commonly found in the lungs, but also originating from various organs ranging from head and neck, gastrointestinal to the genitourinary system. IMTs of the female gynaecological tract are rare and may mimic benign leiomyoma in both clinical presentation and appearance on imaging. We describe a case of uterine IMT, diagnosed after a laparoscopic myomectomy with in-bag morcellation.

Methodology

Result(s)* MELF pattern of invasion was identified in 129 (16%) cases, and was associated with grade 1-2 and deep myometrial invasion (table 1). MELF positive tumours were significantly more often found in the no-specific-molecular-profile (NSMP) subclass (n=95, 84.8%). Of these NSMP MELF positive tumours 91.1% were CTNNB1-wildtype (n=82) and 26.3% KRAS-mutated (n=22). Uncorrected survival analysis showed a significantly favourable impact of MELF on risk of recurrence (p=0.031). After correction for stage, grade, LVS1, molecular EC class, L1CAM and CTNNB1, MELF pattern of invasion did not significantly impact clinical outcome (HR 0.63 95%CI 0.28 – 1.41, p=0.26), table 2.

Conclusion* MELF-pattern of invasion was identified in 16% of early stage (high)intermediate risk EC, and had no independent prognostic impact. However, our results show that MELF pattern of invasion is more frequently found in NSMP KRAS-mutated EC without CTNNB1 mutations. These distinct molecular features could contribute to further refinement of the NSMP-subgroup of EC pointing to potential novel treatment targets.
Introduction/Background: The TransPORTEC Consortium was established in 2013 by the PIs and translational science representatives of the PORTEC-3 trial groups from the Netherlands, United Kingdom, Australia, Canada and France. Purpose of the collaboration is to improve treatment of endometrial cancer (EC) patients. Here, we evaluate our experience with international collaboration to identify challenges and strengths.

Methodology: Since its establishment, TransPORTEC had a strong scientific team of chief investigators, translational leads and core members from participating groups. Twice-yearly TransPORTEC-meetings were organised to build and maintain friendships, share results and discuss new proposals. Over time, the TransPORTEC-biobank has expanded with PORTEC-trial tumour tissues and other cohorts, and is now the world’s largest set of molecularly classified ECs. The research focus has expanded to include molecular cancer immunology and digital pathology. The group’s output include 10 scientific papers and numerous posters and presentations on (inter)national meetings. Their analysis of PORTEC-3 showing differences in chemotherapy effect by molecular group led to initiating an international program with 4 clinical trials on Refining Adjuvant treatment IN endometrial cancer

Conclusion: International research collaborations are dynamic and demanding. Challenges include: balancing between a stable organisational structure and flexibility to adapt to opportunities; providing all members with a satisfying share; and acquisition of funding for academic-sponsored international trials. Strengths are the profound interaction and trust between members with different expertise and backgrounds and shared ambitions and successes, resulting in unique and innovative academic research projects with leverage.