patients were divided into 2 groups: group 1 - HPV-positive (n = 14) and group 2 - HPV-negative (n = 48). CVF proteomic analysis was carried out by the bottom-up method (HPLC-MS/MS) on an Agilent 1100/7 Ti LTQ-FT Ultra mass spectrometer (Thermo Electron, Germany). The search for protein identification and semiquantitative analysis was carried out against the UniProt Knowledgebase (UniProtKB, version 16.05.2014) using the MaxQuant software, version 1.1.1.2.

Results

None of the vaccinated women showed cervical pathology by cytology. In 6 cases, a biopsy of the cervix was performed in the presence of HPV carcinogenic risk together with mild changes in the cervix epithelium during colposcopy. The histological diagnosis in all cases (n = 6) corresponded to CIN1.

In total, more than 419 different proteins were detected in CVF samples. The level of 34 CVF proteins were significantly different in HPV positive group compared to HPV negative patients (p<0.05). Among them, 9 proteins were involved in CVF samples. The level of 34 CVF proteins were significantly different in HPV positive group compared to HPV negative patients (p<0.05). Among them, 9 proteins were involved in

Conclusion

A high incidence of HPV was revealed in Russian women previously vaccinated against HPV (23%). CIN 1 was detected in 6 HPV-positive vaccinated women (43%) with normal cytology (NILM). Proteomic analysis of CVF can be proposed as a non-invasive method for detecting biomarkers for early diagnosis of CIN. This work was supported by RSF grant No. 18-75-10097.

Disclosures

Nothing to disclose.

440

PREOPERATIVE MEASUREMENT OF TUMOR VOLUME IN EARLY CERVICAL CANCER. IS IT RELIABLE?

1Felix Bonia, 1Daniel Vazquez, 1Teresa Castellano, 1Enrique Chacon, 1José Ángel Mínguez, 1Antonio Gonzalez-Martin, 1Teresa Iscar, 1Nabil Manzour, 1Juan Luis Alcazar, 1Luis M Chiva, 1Clinica Universidad de Navarra; 2Clinica Universidad de Navarra; 3Clinica Universidad de Navarra; Pathology.

Introduction/Background

Cervical cancer, a common gynecological tumor, has a high mortality and it seriously threatens the health of the women. The biomarkers of cell proliferation and apoptosis indicate the early carcinogenesis and are useful for future patient monitoring. HPV persistent infection causes overexpression of P16, but this can also be normal tissue. P16 is important and useful for cervical cancer screening, but combined with other biomarker - Ki-67, which is a marker of cell proliferation. In normal tissues, the simultaneous expression of P16 and Ki-67 is less likely to occur. Bcl-2 is an intracellular membrane protein which prevents apoptotic cell death and is the best used as a biomarker, too.

Methodology

We selected a number of 40 paraffin embedded specimens of cervical tissue from patients diagnosed with cervical pathology, who were admitted in our department from 1-st of January 2018 till 31-th of December 2019. The specimens groups were formed by L-SIL (10), H-SIL (10), scamous cervical carcinoma – SCC (10) and nontumoral cervical tissue (10) as control group. For all the specimens was performed the histopathological examination and the immunohistochemistry for Ki-67, P16 protein and Bcl-2 protein. Expression of Ki 67, P16 protein and Bcl-2 was detected and the diagnostic values were analyzed.

Results

Positive rates of Ki 67 and P16 expression in H-SIL and SCC groups are significantly higher than those in L-SIL and control group. In our study the expression’s intensity of P16 and Ki-67 was positively correlated with the degree of cervical lesions. The immunostaining for Bcl-2 is highly expressed in cervical cancer tissue, compared with nontumoral cervical tissue. The difference is not well expressed compared to H-SIL and L-SIL.

Conclusion

Cervical cancer is the malignant tumor with a known etiology, so that prophylactic measures could be taken. The combination of P16 and Ki-67 can identify patients with high risk of SCC and reduce the rate of misdiagnosis. This is of high value for the differential diagnosis between SCC and H-SIL. Bcl-2 is an important regulator of apoptosis. The relationships of tumor genesis with anti-apoptotic genes and pro-apoptotic genes have been confirmed. Combined with other biomarkers, Bcl-2 could be useful in assessing the patients’ prognosis.

Disclosures

Nothing to disclose.