Abstracts

randomised 2:1 to receive FSD of niraparib 300 mg orally once daily (QD) or placebo. The trial was amended to incorporate an ISD of 200 mg orally QD for patients with a body weight <77 kg or platelet count <150,000/μL, and 300 mg QD in patients with a body weight ≥77 kg and platelet count ≥150,000/μL. Patients were stratified by best response to first-line chemotherapy (complete/partial response), receipt of neo-adjuvant chemotherapy (yes/no), and homologous recombination status (deficient/proficient and not determined). BRCA status was determined in tumour samples at screening via the myChoice test (Myriad®). The post hoc BRCAm subgroup PFS analysis was performed using a stratified Cox proportional hazards model and Kaplan-Meier methodology. Safety and patient-reported outcome analyses were also performed.

Results The intention-to-treat population comprised 733 randomised patients, of which 223 (30%) had BRCAm tumours. Of those, 144 (65%) received FSD and 79 (35%) received ISD. Niraparib provided a comparable PFS benefit over placebo in patients receiving both FSD (hazard ratio, 0.44; 95% CI 0.26–0.73) and ISD (hazard ratio 0.29; 95% CI 0.13–0.67). A PFS subgroup analysis by patient characteristics is shown in table 1. A summary of grade ≥3 selected adverse events is shown in table 2.

Conclusion Niraparib significantly improved PFS when utilised as maintenance treatment after front-line therapy in patients with BRCAm aOC. Patients receiving FSD or ISD derived similar PFS benefit, while the ISD group showed an improved safety profile.

Disclosures Dr. Graybill reports personal fees from GlaxoSmithKline.

Dr. Redondo reports institutional research funding from PharmaMar, Roche, and Eisai; and advisory roles at PharmaMar, AstraZeneca, Tesaro, Roche, and Eisai.

Dr. O’Malley reports personal fees from Immunogen, Eisai, Agenus, GlaxoSmithKline: Consultant/Advisory Board for Clovis, Ambr, Abbvie, Janssen[J&J], Regeneron, Novacure, Myriad Genetics, Tarveda, Amgen, VentiRx, Array Biopharma, EMD Serono, Ergomed; Steering committee for Genentech/ Roche and Merck; Institutional funding from Ajinomoto Inc, Ludwig Cancer Research, Stemcentrx, Inc, CERULEAN PHARMA, GOG Foundation, BMS, Serono Inc, TRACON Pharmaceuticals, Yale University, New Mexico Cancer Care Alliance, INC Research, Inc., Inventiv Health Clinical, Iovance Biotherapeutics, Inc, and PRA International.

Dr. Gupta is an employee of GlaxoSmithKline.

Dr. González-Martín reports personal fees and non-financial support from AstraZeneca; grant and personal fees from GlaxoSmithKline, Clovis Oncology, Roche Holding AG, Merck & Co., Inc., Genmab, INMUNOGEN, Pharma Mar, S.A., and Oncoinvest AS.

Dr. Monk reports consulting and advisory role at Merck, GlaxoSmithKline, Roche/Genentech, AstraZeneca, Advaxia, Cerulean Pharma, Amgen, Immunogen, NuCana BioMed, Clovis Oncology, Pfizer, Mateon Therapeutics, Precision Oncology, Perthera, Abbvie, Myriad Pharmaceuticals, Incyte, VBL Therapeutics, Takeda, Samumed, Oncomed, OncoSec, ChemID, Geistlich Pharma, Eisai and Chemocare; Speakers’ bureau at Roche/Genentech, AstraZeneca, Janssen, Clovis Oncology and GlaxoSmithKline; Honoraria from Merck, GlaxoSmithKline, Roche/Genentech, AstraZeneca, Advaxis, Immunogen, NuCana BioMed, Clovis Oncology, Pfizer, Mateon Therapeutics, Precision Oncology, Pethera, Abbvie, Myriad Pharmaceuticals, Incyte, Janssen, Amgen, Genmab, Samumed, Takeda, VBL Therapeutics, Puma Biotechnology, Immunomedics, Conju

Biotherapeutics, Agenus, OncoQuest, ChemID, Geistlich Pharma, Eisai and Chemocare; and Research funding from Novartis, Amgen, Genentech, Lilly, Janssen, Array BioPharma, GlaxoSmithKline, Morphotek, Pfizer, Advaxis, AstraZeneca, Immunogen, Regeneron, and Nucana.

Drs. Korach, Han, Cloven and Knudsen have nothing to disclose.

Funding GlaxoSmithKline (Waltham, MA)

575 EPIDEMIOLOGY OF OVARIAN CANCER IN KAZAKHSTAN (2013–2018)

Dilyara Kaidarova, Yerfan Kukubassov, Raikhan Bolatbekova, Alima Satanova. Kazakh Institute of Oncology and Radiology; Oncogynecology

Abstracts

Introduction/Background Worldwide, ovarian cancer (OC) is the seventh most common cancer in women, with a five-year survival rate below 45%. Every year around the world, OC is diagnosed in 240,000 women. Studies on the epidemiology of OC were carried out in different regions of the world, taking into account various factors. At the same time, the issues of the relationship between morbidity and mortality from OC with genetic, hormonal factors, as well as nutritional factors, morphometric factors, somatic pathology, socio-demographic and other factors were taken into account. The problem of OC epidemiology is extremely relevant in the Republic of Kazakhstan due to the significant prevalence of this disease among the female population, the still high level of neglected cases, as well as high mortality.

Methodology To analyze the epidemiological data of OC in the world, materials from the Globocan 2018 database of the International Agency for Research on Cancer (IARC) were used. To analyze the main statistical data for the regions of Kazakhstan, statistical data from the Cancer Register of the Republic of Kazakhstan for 2013–2018 were used.

Results In the Republic of Kazakhstan alone, there are more than 1000 new cases of OC and more than 400 deaths from this disease per year [5], while in the United States there are more than 22,000 new cases of OC and 14,000 deaths per year [6, 7]. In Kazakhstan, malignant neoplasms of the ovaries occupies the 3rd rank position among gynecological cancers. When analyzing rough intensive indicators of the incidence of ovarian cancer, there is an increase in the detection rate of this disease for the period from 2013 to 2018 [8–10]. The analysis of age-related incidence rates showed that malignant neoplasms of the ovaries are found in all age groups, with a noticeable increase by 65–69 years. The main contingent of the sick are women of working age. Also, when analyzing this five-year period (2013–2018), there is a decrease in the incidence in childhood and adolescence, so in 2014, 5 cases of ovarian cancer were recorded in the age group 5–19 years, and in 2019 - 1 case of this disease. Over the past decade, there has been an increase in morbidity at the age of 55–65 years [5].

Conclusion Morbidity and mortality from OC remain an urgent epidemiological problem in Kazakhstan and require further scientific research to identify risk factors. There are regions in the Republic of Kazakhstan that exceed the national average. In these regions, it is necessary to more widely apply modern methods of early diagnosis and treatment of ovarian cancer. If detected at earlier stages, it is possible to obtain
significant results of OC treatment. The main tasks of OC epidemiology are: continuation of in-depth studies of the prevalence in the regions of the Republic of Kazakhstan with the identification of population groups and regions with the lowest and highest rates of morbidity and mortality from OC.

Disclosures Epidemiological data on the incidence rates of malignant neoplasms of the ovaries according to Globocan 2018 show significant differences across countries (per 100,000 women): from 3.8 in Central Africa to 11.9 in Central and Eastern Europe [1].

Dr Fatiha GOUAREF: I declare that I have no conflict of interest.
Pr Kamel BENTABAK: I declare that I have no conflict of interest.
Pr Fatiha HADJARRAB: I declare that I have no conflict of interest.
Pr Kamel BOUZID: I declare that I have no conflict of interest.