complete cytoreduction was achieved in all MIS patients. MIS had shorter hospital stay (1.5 versus 4.3 days), with no Grade 3 or more complications. Post-operative chemotherapy started in 29.7 days in MIS and 53.6 days in laparotomy. At a mean 24 months follow-up, 44.4% and 54.6% were free of disease at MIS and laparotomy groups, respectively.

Conclusion MIS may be an interesting approach to complete interval cytoreduction in very selected cases, with reduced complications and time to chemotherapy, with comparable DFS.

IGCS20_1096

124 SIMPLE VAGINAL TRACHELECTOMY IN WOMEN WITH EARLY-STAGE LOW RISK CERVICAL CANCER WHO WISH TO PRESERVE FERTILITY: THE NEW STANDARD OF CARE?

M Plante*, M Renaud, A Sebastianelli, J Gregoire. L’Hôpital-Dieu de Quebec, CHU de Quebec, Canada

10.1136/ijgc-2020-IGCS.106

Objective There is a trend towards less radical surgery in women with small volume disease who wish to preserve fertility. The objective of our study was to evaluate the oncologic and obstetrical outcome of simple vaginal trachelectomy (SVT) and node assessment in patients with low-risk early-stage cervical cancer (< 2 cm).

Methods From May 2007 to January 2020, 50 women underwent a SVT/conisation with laparoscopic SLN mapping + pelvic node dissection. Data was collected prospectively in a computerized database. Descriptive statistics and Kaplan-Meyer estimate were used for analysis.

Results Patients’ median age was 29 and 35 (70%) were nulliparous. Eleven had stage IA1 with LVS1, 13 IA2 and 26 IB1 (52%). Twenty-six (52%) had squamous histology and 20 (40%) adenocarcinoma. On final pathology, lymph nodes were negative in 46 patients (92%), 3 had isolated tumor cells and (52%). T wenty-six (52%) had squamous histology and 20 parous. Eleven had stage IA1 with LVSI, 13 IA2 and 26 IB1.

Obstetrical outcome is excellent.

IGCS20_1097

125 RESULTS OF A RANDOMIZED PHASE II TRIAL OF PACLITAXEL AND CARBOPLATIN VERSUS BLEOMYCIN, ETOPOSIDE AND CISPLATIN FOR NEWLY DIAGNOSED AND RECURRENT CHEMONAIVE STROMAL OVARIAN TUMORS

1 Brown*, 2 A Miller, 3K Moxley, 4 F Backes, 5 C Nagel, 6D Bender, 7D Miller, 8M Powell, 9S Westin, 10A Bonebrake, 11C Muller, 12A Alvarez Secord, 13 E Crane, 14 W Tew, 15 A Sood, 16 C Aghajanian. 1 Levine Cancer Institute at Atrium Health, USA; 2 NRG Oncology, USA; 3 University of Oklahoma, USA; 4 The Ohio State University, USA; 5 Case Western Reserve University, USA; 6 University of Iowa, USA; 7 University of Texas Southwestern Medical Center, USA; 8 Washington University, USA; 9 MD Anderson Cancer Center, USA; 10 Cancer Research for the Ozarks, USA; 11 University of New Mexico, USA; 12 Duke University, USA; 13 Tufts University, USA; 14 Memorial Sloan Kettering Cancer Center, USA

Objective To determine the progression free survival (PFS) of paclitaxel and carboplatin (PC) versus bleomycin, etoposide, and cisplatin (BEP) for treatment of newly diagnosed Stage IIIA-IV or recurrent chemotherapy-naive ovarian sex cord-stromal tumors (SCST).

Methods This study was a phase II, open-label, noninferiority trial. Eligible women with SCST were equally randomized to PC (6 cycles P 175 mg/m2 and C AUC= 6 IV every 3 weeks), or BEP (4 cycles B 20 units/m2 IV push day 1, E 75 mg/m2 IV days 1–5; and cisplatin 20 mg/m2 IV days 1–5 every 3 weeks). The targeted 128 patient accrual and PFS hazard ratio (HR)=0.67 provided 85% power to exclude noninferiority margin HR=1.10.

Results 63 patients were accrued at the interim futility analysis (31 PC and 32 BEP). Median age was 48 years. 87% had granulosa cell tumors. 37% had measurable disease. The DSMB closed the study early for futility of PC. The futility analysis was supported by 21/16 PFS events on the PC/BEP arms respectively, with an estimated HR=1.12 [95% CI: 0.52 to 2.16]. Median PFS was 27.7 months [7.4 to 41.0] for PC and 19.7 months for BEP [95% CI: 10.4–52.7]. PC patients had fewer grade 3 or higher adverse events (PC 77% vs BEP 90%). Differences included infections (0 vs 10%), low neutrophil count (65% vs 84%), and low WBC (22 vs 40%). One death NOS occurred on PC.

Conclusions Compared to BEP, PC failed to improve PFS in ovarian SCSTs. PC showed a more favorable side effect profile.

IGCS20_1098

126 A 10 YEAR CLINICO-PATHOLOGICAL STUDY OF RESIDUAL/RECURRENT BORDERLINE OVARIAN TUMOURS IN YOUNG FEMALES UNDERGOING FERTILITY-PRESERVING SURGERY

S Tookey*, M Basha Mohamed, R Arora. University College London Hospitals NHS Foundation Trust, UK

10.1136/ijgc-2020-IGCS.108

Introduction Borderline ovarian tumours (BOT) have a good prognosis with a 5–8% recurrence rate. Although complete staging is the standard surgical treatment; when they occur in younger women, fertility preservation is important. Since the...
The T-cell immunoglobulin and ITIM domain (TIGIT) is a new inhibitory receptor that represents a novel target for the development of immunotherapy strategies. Using an in-silico approach, we identified differentially expressed genes (DEGs) and enriched pathways associated with TIGIT mRNA expression, in high grade serous ovarian cancer (HGSOC) using the Cancer Genome Atlas (TCGA) and the Australian Ovarian Cancer Study (AOCs).

Methods DEGs between patients with high and low TIGIT expression, stratified based on an unsupervised tree analysis were calculated using EdgeR. Enriched pathways with the DEG list were identified using Gene Set Enrichment Analysis (GSEA) using a False Discovery Rate (FDR) <0.25 as significant.

Results Increased TIGIT mRNA expression was associated with improved survival in HGSOC (p=0.034). 975 DEGs were identified in the TIGIT high group, and GSEA identified enriched pathways involved in complement activation humoral immune response, suggesting that TIGIT expression may be associated with an immunologically ‘hot’ tumour. This was confirmed by the finding that increased TIGIT expression was associated with an increased lymphocytic infiltration score, CD8+ T cells and Interferon Gamma Response score. Finally TIGIT expression was reduced in AOCs samples from women with acquired platinum resistance compared to matched primary tumour samples (p=0.014)

Conclusion TIGIT represents an important prognostic marker in HGSOC. Similar to PD-1/PD-L1, TIGIT is associated with increased tumour infiltrating lymphocytes and an improved prognosis. Platinum resistance is associated with a reduction in TIGIT expression and warrants further study in HGSOC.

IGCS20_1104

UTERINE LIPOLEIMYOMA MIMING OVARIAN TERATOMA: A DIAGNOSIS CHALLENGE

1K Ben Hamida*, 1M Bouhani, 1S Sghaier, 2S Essghaier, 2L Chari, 1R Chargui, 1KR rahal. 1Department of Surgical Oncology, Salah Azaiz Institute of Oncology, Tunisia; 2Department of Radiology, Salah Azaiz Institute of Oncology, Tunisia; 3Department of Pathology, Salah Azaiz Institute of Oncology, Tunisia

Introduction Uterine lipoleimyoma (UL) is a rare benign tumor affecting especially perimenopausal and menopausal women and it is often diagnosed as a malignant tumor in radiology findings.

Methods We report a case of a female patient aged 66 years treated for left parauterine mass in Salah Azaiz Institute of Oncology, Tunis, Tunisia in March 2020.

Case Report A 66-year-old woman with medical history of diabetes, high blood pressure and coronary artery disease consulted for a pelvic mass fortuitously discovered on a CT scan. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exam was normal. The thoracic-abdominal pelvic scan showed a multi-partitioned well-defined left ovarian mass. The physical exa...