40.8 to 42.9 with an annual percent increase (AAPC) of 0.5% per year (p<0.05). The 65–69 year old group had the highest incidence (185.4). With respect to race, the highest baseline incidence was in Blacks at 49.5 that increased 2.3% per year (AAPC). Whites had an incidence of 43.6 with an annual percent increase of only 0.4%. The Hispanics had an incidence of 35.0 (AAPC=+1.1%), then Asians incidence 24.0 (AAPC=+1.3%). The intersectionality of age and race showed that the group with the highest risk was 65–69 year old and Black with an incidence of 281.1 (AAPC=+2.3%).

Conclusion The intersectionality of age and race found age 65–69 Black women with the highest incidence of uterine cancer with a six-fold increase compared to the general population, using hysterectomy-corrected data. Further studies are warranted to determine potential genetic, social-determinant, or environment exposures to explain these findings.

IGCS20_1179

Survival Outcomes in Endometrial Cancer Patients Having Lymphadenectomy, Sentinel Node Mapping Followed by Lymphadenectomy and Sentinel Node Mapping Alone: Long-Term Results of a Propensity-Matched Analysis

1G Bogani*, 1C Pinelli, 1A Ditto, 1J Casarin, 1F Ghezzi, 1F Raspagliesi. 1Fondazione IRCCS Istituto Nazionale Dei Tumori, Italy; 2University of Insbruck, Italy

Objective Sentinel node mapping (SLNM) has replaced lymphadenectomy for staging surgery in apparent early-stage endometrial cancer (EC). Here, we evaluate long-term survival of three different approaches of nodal assessment in EC.

Methods This is a multi-institutional retrospective study evaluating long-term outcomes (at least 3 years) of patients having lymphadenectomy, SLNM followed by lymphadenectomy and SLNM alone. We applied a propensity-matched algorithm. Survival outcomes were assessed using Kaplan-Meier and Cox proportional hazard models.

Results Applying a propensity score matching algorithm we selected 180 patients having SLNM (90 SLNM vs. 90 SLNM followed by lymphadenectomy). Additionally, a control group of 180 patients having lymphadenectomy was selected. Overall, 10% of patients were diagnosed with positive nodes. Low volume disease was observed in 16 cases (5 micrometastasis and 11 isolated tumor cells). Patients having SLNM followed by lymphadenectomy had a higher possibility to be diagnosed with a stage IIIC disease in comparison to lymphadenectomy alone (p=0.02); while we did not observe a difference in the diagnostic value of SLNM followed by lymphadenectomy and SLNM (p=0.389). Median follow-up time was 69 (7–206) months. There were no statistical differences in terms of disease-free (p=0.570, log-rank test) and overall survival (p=0.911, log-rank test); Similarly, they did not impact on survival outcomes after stratification by low, intermediate and high-risk patients.

Conclusions Our study highlighted that SLNM provides similar long-term oncologic outcomes than lymphadenectomy, even in high-risk patients. Further evidence is warranted to assess the prognostic value of low volume disease detected by ultrastaging in patients following SLNM.

IGCS20_1067

Molecular Subtype Diagnosis of Endometrial Carcinoma: Comparison of NGS Panel and Promise Classifier

1J Huvila*, 1K Orte, 1P Vainio, 1T Mettälä, 1T Joutsiniemi, 1S Hietanen. 1Department of Pathology, University of Turku and Turku University Hospital, Finland; 2Department of Gynecology and Obstetrics, University of Turku and Turku University Hospital, Finland

Objectives The molecular classification of endometrial carcinoma (EC) is taking the diagnosis on EC to a more comprehensive level and will aid to better identify those patients whose disease is likely to behave differently than predicted when using traditional risk stratification. We are transitioning