Conclusion Pelvic and para-aortic lymphadenectomy in surgical staging of eOC improves DFS for the price of increasing post-operative complications and time to chemotherapy but does not affect OS.

IGCS20_1319

PREVALENCE AND PROGNOSIS OF LYNCH SYNDROME AND SPORADIC MISMATCH REPAIR DEFICIENCY IN THE COMBINED PORTEC-1,-2 AND -3 ENDOMETRIAL CANCER TRIALS

Abstract 28 Figure 1 Kaplan-Meier survival curves for recurrence-freesurvival in the fully triaged MMRd patients

Conclusion The prevalence of LS in the PORTEC EC trial population was 3% and within the MMRd group 10%. LS MMRd-EC seems to have a better overall and recurrence-free survival than sporadic MMRd-EC caused by hypermethylation. Further research into the underlying causes of non-hypermethylated somatic MMRd-EC is ongoing.

IGCS20_1217

COMPREHENSIVE MOLECULAR ASSESSMENT OF MISMATCH REPAIR DEFICIENCY IN LYNCH-ASSOCIATED OVARIAN CANCERS USING NEXT-GENERATION SEQUENCING (NGS) PANEL

Abstract 29 Figure 1 Kaplan-Meier survival curves for recurrence-freesurvival in the fully triaged MMRd patients

Conclusion of 215 women enrolled in our study, 185 (86%) had OC and 30 (14%) had synchronous OC and endometrial cancer. Twenty-eight (13%) cases were MMRd, 11 of which were synchronous. Using the NGS panel, Lynch syndrome (LS) was detected in 39% of MMRd cases (11/28; 7 OC and 4 synchronous): 7 MSH6, 2 MLH1, 1 PMS2, and 1 MSH2. An explanation for the observed MMR phenotype was available for 18/20 deficient cases, including 9/10 MLH1/PMS2- (7 somatic methylation, 1 bi-allelic somatic deletion, 1 germline mutation), 0/1 PMS2-, 6/7 MSH6- (6 germline mutations) and 2/2 MSH2/MSH6- (1 germline mutation, 1 bi-allelic somatic mutation). Concordance between clinical and research panel sequencing results was 90%.

Conclusions Use of our custom NGS panel allows for the streamlined assessment of hereditary and somatic causes of MMR deficiency in OC and may be an attractive screening strategy for LS in this population.