LONG-TERM SURVIVAL OUTCOMES OF INTRAVENOUS CAN CONISATION SPECIMENS PREDICT SENTINEL LYMPH NODE STATUS IN EARLY-STAGE CERVICAL CANCER? A SENTICOL GROUP STUDY

1J Mereaux*, 2V Bialiay, 2B Guiani, 1M Magaud, 1H Bonsang-Kitzis, 1C Ngâ, 2F Lecuru, 2P Mathieu, 1Breast, gynecology and reconstructive surgery unit, Curie Institute, France; 2Gynecology Department, University Hospital of Lausanne, Switzerland; 2Public Health Department, Hospices Civils de Lyon, France; 4Gynecological and Breast Surgery and Cancerology Center, RAMSAY-Générale de Santé, Hôpital Privé des Peupliers, France

Abstracts

IGCS20_1170

21 CAN CONISATION SPECIMENS PREDICT SENTINEL LYMPH NODE STATUS IN EARLY-STAGE CERVICAL CANCER? A SENTICOL GROUP STUDY

1J Mereaux*, 2V Bialiay, 2B Guiani, 1M Magaud, 1H Bonsang-Kitzis, 1C Ngâ, 2F Lecuru, 2P Mathieu, 1Breast, gynecology and reconstructive surgery unit, Curie Institute, France; 2Gynecology Department, University Hospital of Lausanne, Switzerland; 2Public Health Department, Hospices Civils de Lyon, France; 4Gynecological and Breast Surgery and Cancerology Center, RAMSAY-Générale de Santé, Hôpital Privé des Peupliers, France

Objectives The goal of this study was to determine pathologic risk-factors on conisation specimen predicting the sentinel lymph node (SLN) in early-stage cervical cancer.

Methods An ancillary analysis of 2 prospective multicentric database on SLN biopsy for cervical cancer (SENTICOL I and II) were carried out. Patients with IA to IB1 FIGO stage, who underwent SLN biopsy and conisation were included.

Results and Discussion Between January 2005 and July 2012, 161 patients from 25 French centers fulfilled the inclusion criteria. The majority of patients had IB1 clinical FIGO stage (81.4%) and squamous cell carcinoma (76.3%). Macrometastases, micrometastases and Isolated tumor cells (ITCs) were found in 4 (2.5%), 6 (3.7%) and 5 (3.1%) patients respectively. Compared to negative SLN patients, patients with micrometastases or macrometastases were more likely to have lymphovascular space invasion (LVSII) (60% vs 29.5%, p = 0.04) and deep stromal invasion (DSI) ≥ 10 mm (50% vs 17.8%, p = 0.046). By multivariate analysis, DSI ≥ 10 mm on conisation specimens was an independent factor of micrometastases and macrometastases (OR = 3.91, 95%CI = [1.03–14.9], p = 0.046). Among the 94 patients with DSI < 10 mm and absence of LVSII on conisation specimens, 4 patients (4.2%) had ITCs and only one (1.1%) had micrometastases.

Conclusions Patients with DSI ≥ 10 mm and LVSII had higher risk of micrometastatic and macrometastatic SLN. In this sub-population, SLN mapping should be performed meticulously to avoid missing metastatic nodes.