MORTALITY TRENDS IN GYNECOLOGICAL CANCERS IN THE INCREASING INCIDENCE OF CARCINOSARCOMA OF THE OVARY AND FALLOPIAN TUBE IN THE UNITED STATES: WHO IS MOST AT RISK?

IGCS20_1385

Background Tumor Treating Fields (TTFields) are a non-invasive, antimitotic cancer therapy. The Phase 2 INNOVATE study demonstrated safety of TTFields/weekly paclitaxel in 31 PROC (platinum-resistant ovarian cancer) patients (Vergote Gyn Onc 2018); efficacy: median PFS 8.9 months, 25% partial response, 71% clinical benefit and 61% 1-year survival rate. This phase 3 ENGOT-ov50/GOG-329/INNOVATE-3 study [NCT03940196] investigates TTFields plus weekly paclitaxel in PROG patients.

Study Design Patients (N=540) will have PROC (RECIST V1.1) within 6 months of last platinum therapy with maximum of 2–5 prior lines of systemic therapy, ECOG 0–1 and no peripheral neuropathy ≥grade 1. Patients with primary refractory disease will be excluded. Patients will be randomized 1:1 to weekly paclitaxel alone or weekly paclitaxel (starting of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 80 mg/m2 weekly for 8 weeks, and then on Days 1, 8, and 15 for subsequent 28-day cycle) plus TTFields (200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of dose 200 kHz for 18 hours/day and continued if no progression of do

Int J Gynecol Cancer: first published as 10.1136/ijgc-2020-IGCS.311 on 13 November 2020. Downloaded from http://ijgc.bmj.com/ on October 31, 2020 by guest. Protected by copyright.
mass and prognosis of elderly epithelial ovarian cancer patients has not been clarified. This study aimed to evaluate association between iliopsoas muscle mass and prognosis of elderly ovarian cancer patients in the Japanese population.

Method
Medical charts of 110 epithelial ovarian cancers aged 60 years and older at our hospitals between 2013 and 2014 were retrospectively reviewed. Muscle areas of bilateral psoas major muscles at the third lumbar vertebra were measured using images obtained by computed tomography tested before treatment. Psoas muscle index (PMI) was calculated as the psoas muscle area divided by the height squared. Cox-regression Hazard Models were applied.

Results
Median follow-up period was 40 months, average age was 67.8 years, and median PMI was 313 mm²/m² (range 137–572). 44 patients (40.0%) with less than 300 mm²/m² PMI were found to be statistically significant poor prognosis in multivariate analysis (Hazard Ratio: 2.896, 95% Confidence Interval: 1.151-7.287, P value: 0.024).

Conclusions
Low PMI was a statistically significant poor prognosis factor in Japanese elderly patients with epithelial ovarian cancer. It suggests that low PMI can be a biomarker that predicts poor prognosis in elderly patients with epithelial ovarian cancer.

IGCS20_1389

363 A RETROSPECTIVE COHORT STUDY FOR FEASIBILITY OF LAPAROSCOPIC HYSTERECTOMY IN PATIENTS WITH STAGE I A1 CERVICAL CANCER

R Yamada*, Y Todo, H Matsumiya, H Kurosu, K Minowa, T Tsurtata, S Minobe, H Kato. Hokkaido Cancer Center, Japan

Objective
The objective of this study was to verify the feasibility of laparoscopic hysterectomy in patients with stage IA1 cervical cancer.

Methods
This retrospective study was carried out using data from 103 patients with stage IA1 cervical cancer at Hokkaido Cancer Center from January 2000 to December 2016. Study outcomes including operation time, estimated blood loss, blood transfusion, recurrence, and survival were compared between conization group (n=36) and hysterectomy group (n=67). Among patients in the hysterectomy group, those outcomes were compared between non-laparoscopic hysterectomy group (n=31) and laparoscopic hysterectomy group (n=36).

Results
In the present study, there was only one patient with cancer recurrence who underwent cervical conization. The rate of cases of cancer recurrence in the conization group tended to be higher than in the hysterectomy group (2.8% vs. 0%, P=0.18). Estimated blood loss in the laparoscopic hysterectomy group was significantly less than in the non-laparoscopic group (213 g vs. 46.5 g, P=0.0017). The rate of patients who received blood transfusion in the laparoscopic hysterectomy group tended to be higher than in the non-laparoscopic group (9.7% vs. 0%, P=0.056).

Conclusion
It is highly possible that laparoscopic hysterectomy is a safe operative procedure in stage IA1 cervical cancer when performed by experienced surgeons in tertiary centers.