Abstract 11 Table 1

<table>
<thead>
<tr>
<th>TOTAL LATAM</th>
<th>ARGENTINA</th>
<th>BRAZIL</th>
<th>COLOMBIA</th>
<th>MEXICO</th>
<th>PANAMA</th>
<th>PERU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total tested in tumor tissue</td>
<td>376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gBRCAM</td>
<td>112 (29.78%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gBRCAM N (%)</td>
<td>67 (56.2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sBRCAM N (%)</td>
<td>32 (28.57%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconclusive</td>
<td>13 (11.6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Objective: To assess the prevalence of gBRCAM and sBRCAM in ovarian cancer patients.

Flabra, Frontline Approach for BRCA Testing in Ovarian Cancer (OC) Treatment Naive Population. A Latin America (LA) Epidemiologic Study

1S Goncalves, 2G Gomez Abuin, 3D Gallardo, 4P Estevez Diz, 5V Caerones, 6M De la Vega, 7P Palazzo, 8G Lerzo, 9R Kaen, 10R Gerson, 11M Lim, 12M Philco, 13M Moreira Costa Zorzetto, 14D A De Melo, 15R Hego, 16D de Oliveira Santana, 17M Mederos Milhomem Beato, 18Trujillo, 19M Plata, 20A Yepes, 21A Cock, 22MvM Bonifacio, 23M Cortes, 24L Fein, 25C Castillo, 26C Pacheco, 27N M Triona, 28E Hoya, 29R Jaramillo, 30S Soare Nunes, 31A Menezes Morelles, 32A Viana de Carvalho Galabich, 33EH Cronemberger Costa e Silva, 34M Mora, 35Y Diaz Perez, 36L Sanga, 37MH Pereira, 38R Ramírez, 39A Nogueira, 40R Guindalini, 41R Miranda, 42G Giornelli, 43A AstraZeneca, Medical Affairs LATAM, Buenos Aires, Argentina; 44Hospital Alemán, Oncology, Buenos Aires, Argentina; 45INCAN, Oncology, Mexico, Mexico; 46Istituto del Cáncer del Estado de São Paulo – ICESP, Oncology, São Paulo, Brazil; 47Istituto Angel Roffo, Oncology, Buenos Aires, Argentina; 48CEMIC, Oncology, Buenos Aires, Argentina; 49Istituto Sagrada Familia, Oncology, San Miguel de Tucumán, Argentina; 50Istituto Fundación Investigar, Oncology, Buenos Aires, Argentina; 51COIL, Oncology, La Rioja, Argentina; 52The American British Cowdray Medical Center L.A.P., Centro Medico ABC, Oncology, Mexico, Mexico; 53Istituto Oncologico Nacional, Oncology, Panama, Panama; 54Hospital Nacional Alberto Sabogal Sologuren, Oncology, Callao, Peru; 55Hospital del Câncer de Barretos, Oncology, São Paulo, Brazil; 56Istituto Nacional de Cancer Inca, Oncology, Lima, Peru; 57Hospital Pérola Byington, Oncology, Sao Paulo, Brazil; 58Istituto del Cáncer de Ceará, Oncology, Ceará, Brazil; 59Fundación Amasai Carvalho, Oncology, Sao Paulo, Brazil; 60Istituto Nacional de Cancerología, Oncology, Bogota, Colombia; 61Fundación Cardio Infantil, Oncology, Bogota, Colombia; 62Clínica Vida, Oncology, Medellin, Colombia; 63Istituto de Cancerología de la Clínica las Américas, Oncology, Medellin, Colombia; 64Nuvias, Latinamerica, Buenos Aires, Argentina; 65Istituto Reina Fabiola, Oncology, Cordoba, Argentina; 66Centro Oncológico de Rosario, Oncology, Rosario, Argentina; 67Hospital Peñaranda, Oncology, Resistencia, Argentina; 68ONCOSALUD, Oncology, Lima, Peru; 69Hospital Edgardo Rebaglioni, Oncology, Lima, Peru; 70Oncomédica – IMAT, Oncology, Montería, Colombia; 71Hematol Oncologistos Call, Oncology, Call, Colombia; 72Hospital Erasto Gaertner, Oncology, Curitiba, Brazil; 73Hospital Moninos de Vento, Oncology, Sao Paulo, Brazil; 74Ensayo y terapia de innovación Clínica AMD, Oncology, Rio Vermeil, Brazil; 75Centro Regional Integrado de Oncología – CRCG, Oncology, Alvaro Wayne, Brazil; 76Istituto COI de Pesquisa, Oncology, Rio de Janeiro, Brazil; 77Pontificia Universidad Católica do Rio Grande do Sul, Oncology, Rio Grande do Sul, Brazil; 78AstraZeneca, Medical Affairs, Buenos Aires, Argentina; 79AstraZeneca, Diagnostics, Buenos Aires, Argentina; 80AstraZeneca, Medical LATAM, Sao Paulo, Brazil; 81Fundación Valle de Lili, Oncology, Valle de Lili, Colombia; 82Angelica Nogueira Hospital das Cânceres- UFPR, Oncology, Sao Paulo, Brazil; 83CLIN Salvador, Oncology, Salvador, Brazil; 84Vanessa Miranda Instituto D’OR, Oncology, Sao Paulo, Brazil; 85Istituto Alejandro Fleming, Oncology, Buenos Aires, Argentina

10.1136/ijgc-2019-IGCS.11

Int J Gynecol Cancer: first published as 10.1136/ijgc-2019-IGCS.12 on 18 September 2019. Downloaded from http://ijgc.bmj.com/ on October 21, 2023 by guest. Protected by copyright.
Mucinous ovarian carcinoma (MOC) is a rare ovarian cancer subtype that responds poorly to conventional chemotherapy. Recurrent and advanced disease have poor survival and there are no specific guidelines for their treatment. We used a large cohort of genomic and immunohistochemical data to evaluate the likelihood of success of possible therapeutic interventions.

Methods We used DNA sequencing data (n=185) and genome-wide copy number (n=199) from primary MOC to identify key genetic events, homologous recombination deficiency scores and mismatch repair deficiency. Immuno-histochemistry data was obtained for CK7, CK20, PAX8, p16, CDX2, HER2 and ER (n=162–256) and tumour infiltrating lymphocytes were counted on H&E stained slides (n=40).

Results Therapies exploiting homologous recombination deficiency are unlikely to be effective in MOC, as only 1.5% had a homologous recombination deficiency score of more than 50. Mismatch repair deficiency was very rare (<1%). Most cases had low lymphocyte counts, corresponding to a moderate mutation load. Events that suggest an existing targeted therapy include: ERBB2 amplification(26%), ERBB3 mutation (4%) and BRAF mutation(9%). Novel agents currently in clinical trials targeting genetic events such as TP53 missense mutation(46%), RNF43 mutation(11%), PIK3CA mutation(8%) and KRAS/NRAS mutations(66%).

Conclusions MOC is genetically diverse but with a number of potential targets. Importantly, the clinically observed lack of response to cisplatin is supported by a corresponding lack of a genomic signature, and MOC are unlikely to respond to PARP inhibitors. The role of immunotherapy is unclear. Testing novel therapeutic options in appropriate patient-derived models will be crucial and we are currently developing organoid cultures from this disease.

Plenary 3

IGCS19-0583

1MB Sert*, 1A Darum, 1G Kristensen, 1B Davidson. 1Oslo University Hospital- The Norwegian Radium Hospital, Gynecologic Oncology, Oslo, Norway; 2Oslo University Hospital- The Norwegian Radium Hospital, Pathology, Oslo, Norway; 3Oslo University Hospital- The Norwegian Radium Hospital, National Resource Center for late effects after cancer treatment, Oslo, Norway; 3Institute of Clinical Medicine, University of Oslo, Oslo, Norway

Objectives To compare the long-term oncologic outcomes after minimally invasive surgery (robot assisted/laparoscopic radical hysterectomy) (MIS) versus abdominal radical hysterectomy (ARH) for early-stage cervical cancer (CC).

Methods This is a large single center retrospective study. From our institution’s patient registry, we identified a total of 587 early-stage cervical cancer patients who underwent either MIS or ARH between 2000 and 2017. We excluded the following patients from the final analysis: (1) received neo-adjuvant treatment prior to surgery; (2) had histologic types other than squamous cell carcinoma, adenocarcinoma, or adenosquamous carcinoma; (3) were double primary cancer cases; (4) had stages higher than stageIB1 (FIGO 2009). We included only patients who underwent radical hysterectomy for early-stage cervical cancer and radical parametrectomy for stump cancer patients in our study population.

Results In total, 230 and 357 patients were assigned to the MIS and ARH groups, respectively. There were no significant differences for any demographics including age, stage, histology. Five-year recurrence free survival was 88.6% (95% CI, 83.4%- 92.3%) and 93.5% (95% CI, 90.4%- 95.7%), (p=0.04) respectively in the MIS and ARH group, and the five-year cancer specific survival was 95.4% (95% CI, 90.9%- 97.7%) and 97.4% (95% CI, 95.1%- 98.7%), (p=0.12) in the MIS and ARH group, respectively. MIS group have more peri- toneal-combined relapses comparing ARH (p=0.02). The relapse rate tended to be highest for squamous cell carcinoma in MIS group (p=0.09). Disease free survival and cancer specific survival were worse in the MIS group p- value= 0.04 and 0.12 respectively.