PREDICTORS OF POSTOPERATIVE MORBIDITY AFTER CYTOREDUCTIVE SURGERY FOR ADVANCED OVARIAN CANCER: ANALYSIS AND MANAGEMENT OF COMPLICATIONS

Objectives To evaluate a correlation between pre-surgical condition as predictor of overall, severe complications and 90 days mortality in patients undergoing cytoreduction surgery for advanced ovarian cancer.

Methods Consecutive patients affected by advanced ovarian cancer who have undergone cytoreduction surgery were considered for the study. Patients’ characteristics and surgical data were recorded. Modified Frailty Index (mFI) was evaluated. Higher mFI scores indicated more severe comorbidities. Postoperative complications were evaluated and graded according to Accordion score. Logistic regression was used to evaluate the associations between clinical and surgical variables and severe or overall complications.

Results 263 patients were included. 86 patients developed at least one complication: 70 (26.6%) of these reported mild complications, 13 (4.9%) developed severe complications, 3 (1.1%) died within 90 days from surgery. At multivariate analysis logistic regression mFI>3 (OR: 1.67, CI 95% 1.08–2.81; p=0.05) the complexity of surgical procedures performed (OR: 4.15, CI 95%: 2.38–7.23; p<0.001) were independent predictors of overall complications, while BMI>30 (OR: 5.13, CI 95%:1.15–22.92, p=0.03), mFI>3 (OR:2.45,CI95%:1.06–5.67;p=0.04),high complexity surgery executed (OR:12.31, CI95%:3.08–47.74;p<0.001) were independent predictors of severe complications.
Conclusions mFI and high complexity surgery are predictive of Severe and Overall Complications. Patients’ pre-operative care profile evaluation may guide specialists in reducing, preventing and managing complications correctly. mFI seems to be effective in identify high-risk patients and represent a valuable tool to help health professionals in providing risk counseling and discussion of management for women undergoing surgery for gynecologic cancer.

Breast Plenary

IGCS19-0175

MRI-BASED PREDICTIVE FACTORS OF AXILLARY LYMPH NODE METASTASES IN BREAST CANCER

1D Atallah, 2M Moubarak*, 1W Arab, 1N El Kassis, 1G Chahine, 2M Ghossein, 2C Salem. 1Saint Joseph University, Obstetrics and Gynecology, Beirut, Lebanon; 2Saint Joseph University, Obstetrics and Gynaecology and Gynecology, Beirut, Lebanon; 3Saint Joseph University, Oncology, Beirut, Lebanon; 4Saint Joseph University, Radiology, Beirut, Lebanon

Objectives To determine the accuracy of MRI in detecting axillary lymph nodes (ALNs) metastases preoperatively and to define predictive characteristics of ALN involvement in patients with invasive breast cancer.

Methods Breast MR (3 Tesla) examinations of 169 patients with invasive breast cancer were reviewed at Hôtel-Dieu de France Hospital. Morphological parameters in addition to apparent diffusion coefficient (ADC) value were compared with pathological nodal status.

Results The sensitivity and specificity of MRI in detecting ALN involvement were 87.5% and 55.6% respectively. The negative and positive predictive value of MRI was 81.64% and 66.34% respectively. The mean size of metastatic ALN was larger than that of negative ALN (13.9 mm vs. 10.9 mm, p = 0.000). ALNs larger than 12 mm were associated with higher risk of metastases (p = 0.000). The asymmetry of size between ipsilateral and contralateral ALNs was more significant in positive ALNs on pathology (p= 0.008 vs. 0.043). In a univariate analysis, the round shape of ALN, loss of fatty hilum, irregular contours and hypo-intensity/heterogeneous intensity on T2-weighted sequence were significantly predictive of lymph node metastasis (p = 0.000 for the four characteristics). In a multivariate analysis, only the round shape of lymph node and the hypo-intensity/heterogeneous intensity on T2-weighted sequence were significantly associated with lymph node metastasis (p=0.01 and p=0.018 respectively). The ADC value of ALN did not aid the differentiation between benign and metastatic lymph nodes (p= 0.862).

Conclusions Conventional MRI using the ALN shape and the signal intensity in T2-weighted sequences can evaluate the axilla with high sensitivity.

IGCS19-0128

SHOULD WE OFFER MULTI-GENE TESTING TO ALL PATIENTS WITH BREAST CANCER: A COST-EFFECTIVENESS ANALYSIS

1L Sun, 2A Brentnall, 3S Patel, 4D Buist SM, 5E Bowles JA, 6DG Evans R, 7D Eccles, 8J Hopper, 9S Li, 10S Duffy, 11J Cuzick, 12dos Santos-Silva, 12S Sadique, 13T Yang, 14R Legood, 1,2,10,11R Marchand*. 1London School of Hygiene and Tropical Medicine, Department of Health Services Research and Policy, London, UK; 2Barts Cancer Institute-Queen Mary University of London, Centre for Experimental Cancer Medicine, London, UK; 3Wolfson Institute of Preventive Medicine-Queen Mary University of London, Centre for Cancer Prevention, London, UK; 4Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington Health Research Institute, Seattle, USA; 5The University of Manchester, Genomic Medicine- Manchester Academic Health Science Centre MAHSC-Manchester Universities Foundation Trust- St. Mary's Hospital, London, UK; 6University of Southampton, Cancer Sciences Academic Unit- Faculty of Medicine and Cancer Sciences, Southampton, UK; 7University of Melbourne, Centre for Epidemiology and Biostatistics-Melbourne School of Population and Global Health- Faculty of Medicine- Dentistry and Health Sciences, Melbourne, Australia; 8London School of Hygiene and Tropical Medicine, Department of Non-communicable Disease Epidemiology, London, UK; 9Peking University, School of Public Health, Beijing, China; 10Barts Health NHS Trust- Royal London Hospital, Department of Gynaecological Oncology, London, UK; 11University College London, MRC Clinical Trials Unit at UCL- Institute of Clinical Trials and Methodology- Faculty of Population Health Sciences, London, UK

Objectives To estimate incremental lifetime-effects, costs, cost-effectiveness and population impact of multigene-testing all BC patients compared to current practice of family-history/clinical-based criteria based genetic (BRCA)-testing.

Methods Cost-effectiveness microsimulation modelling study comparing lifetime costs-&-effects of BRCA1/BRCA2/PALB2 (multigene) testing all unselected BC-cases (Strategy-A) with family-history/clinical/criteria-based BRCA1/BRCA2-testing (Strategy-B) in both UK and US populations. Data obtained from 11,836 population-based BC-patients (regardless of family-history) recruited to four large research studies in the UK (Predicting-Risk-of-Cancer-at-Screening (PROCAS: 1389 out of 57,000 women) & Prospective-Outcomes-in-Sporadic (Predicting-Risk-of-Cancer-at-Screening (PROCAS: 1389 out of 57,000 women) & Prospective-Outcomes-in-Sporadic-breast-cancer (POSEBC: 2883)) studies); US (Kaiser Permanente Washington Breast-Cancer-Surveillance Consortium (BCSC) registry: 5892 out of 132,139 women) and Australia (Population-based BC-cases of the Australian-Breast-Cancer-Family-Study (ABCFS: 1670 women)). The main outcome measure was the incremental cost per quality-adjusted life-year (QALY) gained with a 3.5% annual discount. Parameter uncertainty was explored using one-way and probabilistic sensitivity analyses.

Results Compared with current clinical-criteria/family-history-based BRCA-testing, (BRCA1/BRCA2/PALB2) multigene-testing for all BC-patients would cost £10,470/QALY (UK) or $58,702/QALY (US) gained, well below UK/NICE and US cost-effectiveness thresholds of £30,000/QALY & $100,000/QALY. Probabilistic sensitivity-analysis shows unslected multigene-testing remains cost-effective for 98% UK/77% US health-system simulations. One year’s unslected panel-genetic testing can prevent 1,776 BC/OC-cases and 557 deaths in the