108 CLINICAL RELEVANCE OF ADDITION OF CONVENTIONAL TREATMENT TO CONCURRENT CHEMORADIOTHERAPY IN PATIENTS WITH FIGO STAGE III-IV CERVICAL CANCER CANCER

H Kurosu*, Y Todo, Y Suzuki, R Yamada, K Minowa, S Minobe, H Kato. National Hospital Organization, Hokkaido Cancer Center, Division of Gynecologic Oncology, Sapporo, Japan

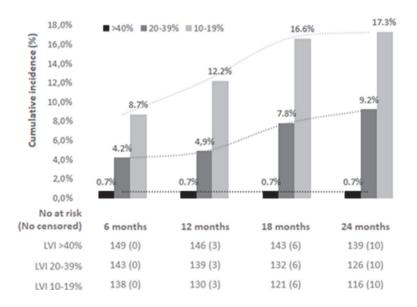
10.1136/ijgc-2021-ESGO.6

Introduction/Background* Concurrent chemoradiotherapy (CCRT) has limited therapeutic efficacy for stage III-IV cervical cancer. We aimed to identify a subgroup of patients with stage III-IV cervical cancer who benefit from CCRT with additional treatment.

Methodology We retrospectively reviewed 120 patients with stage III-IV cervical cancer who were treated with CCRT from 2002 to 2018. We compared overall survival between patients treated with CCRT alone and those who received CCRT with additional conventional treatments (systemic chemotherapy before and/or after CCRT and/or extended-field radiation). Prognostic factors were statistically analyzed.

Result(s)* Overall, 44 (36.7%) and 21 (17.5%) patients were radiologically diagnosed with pelvic and para-aortic lymph node enlargement, respectively. The median tumor diameter was 5.7 cm. Sixty-nine (57.5%) patients received no additional treatment, and 51 (42.5%) received additional treatment. Cox regression analysis identified the following prognostic factors: histological non-squamous cell carcinoma (hazard ratio [HR], 3.9; 95% confidence interval [CI], 1.8–8.2), tumor diameter of ≥ 6 cm (HR, 2.1; 95% CI, 1.2–3.7), radiological pelvic lymph node enlargement (HR, 2.1; 95% CI, 1.1–4.0), and radiological para-aortic lymph node enlargement (HR, 2.1; 95% CI, 1.1–4.0), the 5-year overall survival rate was lower in the additional treatment group than in the CCRT alone group (78.7% vs. 80.9%, respectively; log-rank test, P = 0.79).

Conclusion* Addition of conventional treatments to CCRT might not improve survival in patients with advanced cervical cancer. Novel treatment strategies including immune checkpoint inhibitors should be considered for such patients.


114

LOWER-LIMB LYMPHEDEMA AFTER SENTINEL LYMPH NODE BIOPSY IN CERVICAL CANCER PATIENTS

¹R Poncová*, ¹R Kocián, ²S Marnitz, ³J Jarkovský, ⁴J Klát, ⁵R Pilka, ⁶A Torné, ⁷I Zapardiel, ⁸A Petiz, ⁹L Lay, ¹⁰B Sehnal, ¹¹J Ponce, ¹²M Felsinger, ¹³O Arencibia-Sanchéz, ¹⁴P Kaščák, ¹⁵K Zalewski, ²C Köhler, ¹F Frühauf, ¹M Borčinová, ¹D Cibula. ¹Gynecologic Oncology Center, Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic; ²Department of Special Operative and Oncologic Gynaecology, Asklepios-Clinic Hamburg, Hamburg, Germany; ³Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ⁴Department of Obstetrics and Gynecology, University Hospital Ostrava, Ostrava Poruba, Czech Republic (Central and Eastern European Gynecologic Oncology Group, CEEGOG); ⁵Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Palacky University, University Hospital Olomouc, Olomouc, Czech Republic (Central and Eastern European Gynecologic Oncology Group, CEEGOG); ⁶Unit of Gynecological Oncology, Institute Clinic of Gynaecology, Obstetrics, and Neonatology, Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; ⁷Gynecologic Oncology Unit, La Paz University Hospital, Madrid, Spain; ⁸Instituto Portugues de Oncologia do Porto, Portugal: ⁹Department of Gynaecology, Institute of Oncology Angel H Roffo University of Bueno s Aires, Buenos Aires, Argentina; ¹⁰Department of Obstetrics and Gynecology, University Hospital Bulovka, First Faculty of Medicine, Charles University, Prague, Czech Republic (Central and Eastern European Gynecologic Oncology Group, CEEGOG): ¹¹Department of Gynecology, University Hospital of Bellvitge, Biomedical Research Institute of Bellvitge, (IDIBELL), University of Barcelona, Barcelona, Spain; ¹²Department of Gynecology and Obstetrics, Faculty of Medicine, Masaryk University, Brno, Czech Republic (Central and Eastern European Gynecologic Oncology Group, CEEGOG); ¹³University Hospital of the Canary Islands, Las Palmas de Gran Canaria, Spain; ¹⁴Department of Obstetrics and Gynecology, Faculty Hospital Trencin, Trencin, Slovakia (Central and Eastern European Gynecologic Oncology Group, CEEGOG); ¹⁵Department of Gynecologic Oncology, Holycross Cancer Center, Kielce, Poland (Central and Eastern European Gynecologic Oncology Group, CEEGOG)

10.1136/ijgc-2021-ESGO.7

Introduction/Background* Lower-limb lymphedema (LLL) is a well-recognized adverse outcome of the surgical management of cervical cancer. Recently, sentinel lymph node (SLN) biopsy has emerged as an alternative procedure to systematic pelvic lymphadenectomy (PLND) aiming to decrease the risk of complications, especially LLL development. Our study represents the first prospective analysis of LLL incidence in cervical cancer patients after a uterine procedure with SLN biopsy, without systematic PLND.

Abstract 114 Figure 1

116	EVALUATION OF BINTRAFUSP ALFA, A BIFUNCTIONAL
	FUSION PROTEIN TARGETING TGF- β and PD-L1, in
	CERVICAL CANCER: DATA FROM PHASE 1 AND PHASE 2
	STUDIES

¹J Strauss*, ²F Braiteh, ³E Calvo Aller, ³M De Miguel, ⁴A Cervantes, ⁵WJ Edenfield, ⁶T LI, ⁷MA Rasschaert, ⁸TW Park-Simon, ⁹FL Munoz, ¹⁰L Paz-Ares, ¹¹A Spira, ¹²G Jehl, ¹³I Dussault, ¹³L Ojalvo, ¹⁴J Gulley, ¹⁵S Allan. ¹Center for Cancer Research, National Cancer Institute, National Institutes of Health, Laboratory of Tumor Immunology and Biology, Bethesda, MD, USA; ²Comprehensive Cancer Centers of Nevada, Las Vegas, NV, USA; ³START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain; ⁴University of Valencia, Biomedical Research Institute INCLIVA, València, Spain; ⁵Greenville Hospital System University Medical Center (ITOR), Greenville, SC, USA; ⁶University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA; ⁷Universitair Ziekenhuis Antwerpen, Antwerpen, Belgium; ⁸Medizinische Hochschule Hannover, Hannover, Germany; ⁹Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBERONC, Madrid, Spain; ¹⁰Hospital Universitario 12 de Octubre, Madrid, Spain; ¹¹Virginia Cancer Specialists, Fairfax, VA, USA; ¹²Merck KGaA, Darmstadt, Germany; ¹³EMD Serono Research and Development Institute, Inc., Billerica, MA, USA; ¹⁴Center for Cancer Research, National Cancer Institute, National Institutes of Health, Genitourinary Malignancies Branch, Bethesda, MD, USA; ¹⁵Tasman Oncology Research Ltd, Southport, QLD, Australia

10.1136/ijgc-2021-ESGO.8

Introduction/Background* The accelerated US Food and Drug Administration approval of pembrolizumab validated the efficacy of anti-PD-(L)1 therapy for patients with recurrent/meta-static cervical cancer; however, the objective response rate (ORR) with pembrolizumab was 14.3% in patients with PD-L1–expressing tumours. Human papillomavirus infection is implicated in >95% of cervical cancers and is linked to

Abstract 116 Table 1

	All patients (N=39)
Best overall response, n (%)	2 (5.1)
Complete response (CR)	9 (23.1)
Partial response (PR)	3 (7.7)
Stable disease	20 (51.3)
Progressive disease (PD)	5 (12.8)
Not evaluable	1 (2.6)
Delayed PR*	
Confirmed ORR (CR + PR), n (%)	11 (28.2)
95% CI	15.0-44.9
Total clinical response rate (ORR + delayed PR), n (%)	12 (30.8)
Confirmed ORR in subgroups, n/n (%)	6/24 (25.0)
Squamous cell carcinoma	5/12 (41.7)
Adenocarcinoma	6/25 (24.0)
Prior bevacizumab	5/14 (35.7)
No prior bevcizumab	
Duration of response (confirmed ORR), median (range), months	11.7 (1.4-41.2)
Ongoing response, n/n (%)	5/11 (45.5)
Duration of ongoing response, months (range)	1.4-41.2
Median overall survival, months	13.4
95% CI	5.5-not reached
24-month overall survival rate,%	33.2

*Patient had a delayed PR after initial disease progression and did not meet response criteria by RECIST 1.1. Duration of response was 23.7 months.

		N (%)
Age category (years)	≤40	54 (36.0%)
	41-60	78 (52.0%)
	>60	18 (12.0%)
Body mass index category (kg/mg²)	≤25	79 (52.7%)
	26–30	41 (27.3%)
	>30	30 (20.0%)
FIGO stage (preoperative)	IA1 + LVSI	10 (6.7%)
	IA2	12 (8.0%)
	IB1	128 (85.3%)
Tumor type	Squamous cell carcinoma	102 (68.0%)
	Adenocarcinoma	46 (30.7%)
	Adenosquamous carcinoma	2 (1.3%)
Tumor size (preoperative imaging)	≤2 cm	107 (71.3%)
	>2 cm	43 (28.7%)
Lymphovascular space invasion (LVSI)	Yes	40 (26.7%)
	No	110 (73.3%)
Surgical approach	Laparotomy	50 (33.3%)
	Minimally invasive	100 (66.7%)
Type of uterine procedure	Type B radical hysterectomy	36 (24.0%)
	Type C1 radical hysterectomy	61 (40.7%)
	Type C2 radical hysterectomy	24 (16.0%)
	Simple hysterectomy	1 (0.7%)
	FST (conization, trachelectomy)	28 (18.6%)
No of removed SLNs	2	59 (39.3%)
	3-4	69 (46.0%)
	>4	22 (14.9%)
SLN metastatic involvement	No	137 (91.3%)
	Macrometastasis or micrometastasis	9 (6.0%)
	Isolated tumor cells	4 (2.7%)
Adjuvant treatment	Chemoradiotherapy	12 (8.0%)
-	Combined radiotherapy	5 (3.3%)
	Brachytherapy	1 (0.7%)
	None	132 (88%)

Abstract 114 Figure 2

Methodology In a prospective international multicenter trial SENTIX, the group of 150 patients with stage IA1–IB2 cervical cancer treated by uterine surgery with bilateral SLN biopsy was prospectively evaluated using both objective LLL assessments, based on limb volume increase (LVI) between pre- and postoperative measurements, and subjective patient-perceived swelling were conducted in six-month periods over 24-months post-surgery. The characteristics of the patients are summarized in table 1.

Result(s)* The cumulative incidence of LLL at 24 months was 17.3% for mild LLL (LVI 10-19%), 9.2% for moderate LLL (LVI 20-39%), while only one patient (0.7%) developed severe LLL (LVI >40%). The median interval to LLL onset was nine months (figure 1). A transient edema resolving without intervention within six months was reported in an additional 22% of patients. Subjective LLL was reported by 10.7% of patients, though only a weak and partial correlation between subjective-report and objective-LVI was found. No risk factor directly related to LLL development was identified.

Conclusion* Contrary to the expectations, the replacement of standard PLND by bilateral SLN biopsy in the surgical treatment of cervical cancer does not eliminate the risk of mild to moderate LLL, which develops irrespective of the number of SLN removed.

Trial registration ClinicalTrials.gov: NCT02494063

Funding This work was supported by Charles University in Prague (UNCE 204065 and PROGRES Q28/LF1) and by a grant from the Czech Health Research Council (NV19-03-00023). The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Conflicts of Interest The authors declare no conflict of interest.