Article Text

Download PDFPDF
Intraoperative Frozen Section Risk Assessment Accurately Tailors the Surgical Staging in Patients Affected by Early-Stage Endometrial Cancer: The Application of 2 Different Risk Algorithms
  1. Paolo Sala, MD*,
  2. Matteo Morotti, MD*,
  3. Mario Valenzano Menada, MD*,
  4. Elisa Cannavino, MD*,
  5. Ilaria Maffeo, MD*,
  6. Luca Abete, MD,
  7. Ezio Fulcheri, MD,
  8. Stefania Menoni, PhD,
  9. Pierluigi Venturini, MD* and
  10. Andrea Papadia, MD, PhD*
  1. *Departments of Obstetrics and Gynecology,
  2. Surgical and Morphological Sciences, and
  3. Biostatistics, San Martino Hospital and University of Genoa, Genoa, Italy.
  1. Address correspondence and reprint requests to Paolo Sala, MD, Department of Obstetrics and Gynecology, San Martino Hospital and University of Genoa, Largo R. Benzi 1, 16132 Genoa, Italy. E-mail: paolsala{at}gmail.com.

Abstract

Objective The aim of this study was to investigate the frozen section (FS) accuracy in tailoring the surgical staging of patients affected by endometrial cancer, using 2 different risk classifications.

Methods/Materials A retrospective analysis of 331 women affected by type I endometrial cancer and submitted to FS assessment at the time of surgery. Pathologic features were examined on the frozen and permanent sections according to both the GOG33 and the Mayo Clinic algorithms. We compared the 2 models through the determination of Landis and Koch kappa statistics, concordance rate, sensitivity, specificity, positive predictive value, and negative predictive value for each risk algorithm, to assess whether there are differences in FS accuracy depending on the model used.

Results The observed agreement between the frozen and permanent sections was respectively good (k = 0.790) for the GOG33 and optimal (k = 0.810) for the Mayo classification. Applying the GOG33 algorithm, 20 patients (6.7%) were moved to an upper risk status, and 20 (6.7%) were moved to a lower risk status on the permanent section; the concordance rate was 86.5%. With the Mayo Clinic algorithm, discordant cases between frozen and permanent sections were 19 (7.6%), and the risk of lymphatic spread was underestimated only in 1 case (0.4%); the concordance rate was 92.4%. The sensitivity, specificity, positive predictive value, and negative predictive value for the GOG33 were 92%, 94%, 92%, and 93%, whereas with the Mayo algorithm, these were 98%, 91%, 77%, and 99%, respectively.

Conclusions According to higher correlation rate and observed agreement (92.4% vs 86.5% and k = 0.810 vs 0.790, respectively), the Mayo Clinic algorithm minimizes the number of patients undertreated at the time of surgery than the GOG33 classification and can be adopted as an FS algorithm to tailor the surgical treatment of early-stage endometrial cancer even in different centers.

  • Endometrial cancer
  • Intraoperative assessment
  • Frozen section
  • Surgical staging
  • Lymph node dissection

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • The authors declare no conflicts of interest.