Article Text
Abstract
Ovarian cancer presents a diagnostic challenge because of its subtle clinical presentation and elusive cell of origin. Two new technologies of proteomics have advanced the dissection of the underlying molecular signaling events and the proteomic characterization of ovarian cancer: mass spectrometry and protein array analysis. Mass spectrometry can provide a snapshot of a proteome in time and space, with sensitivity and resolution that may allow identification of the elusive “needle in the haystack” heralding ovarian cancer. Proteomic profiling of tumor tissue samples can survey molecular targets during treatment and quantify changes using reverse phase protein arrays generated from tumor samples captured by microdissection, lysed and spotted in serial dilutions for high-throughput analysis. This approach can be applied to identify the optimal biological dose of a targeted agent and to validate target to outcome link. The evolution of proteomic technologies has the capacity to advance rapidly our understanding of ovarian cancer at a molecular level and thus elucidate new directions for the treatment of this disease
- mass spectrometry
- ovarian cancer
- proteomics
- tissue microarray