2022-LBA-325-ESGO | PATIENTS WITH NEWLY DIAGNOSED OVARIAN CANCER TREATED WITH MAINTENANCE RUCAPARIB: EXPLORATORY **BIOMARKER ANALYSIS FROM THE PHASE** 3 ATHENA-MONO STUDY (GOG-3020/ ENGOT-OV45; NCT03522246) ¹Ana Oaknin, ²Rebecca S Kristeleit, ^{3,4}Haider S Mahdi, ⁵Myong Cheol Lim, ⁶Rocco de Vivo, ⁷Erin A Salinas, ⁸Michelle K Wilson, ⁹Michalis Liontos, ¹⁰Alessandro D Santin, ¹¹Diane M Provencher, ¹²Fuat Demirkiran, ¹³Lyndsay J Willmott, ¹⁴Anita M Chudecka-Głaz, ¹⁵Thomas J Herzog, ¹⁶Mario E Beiner, ¹⁷Larry J Copeland, ¹⁸Iain A McNeish, ¹⁹Kevin K Lin, ²⁰Bradley J Monk. ¹Gynaecologic Cancer Programme, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; ²Department of Oncology, Guy's and St Thomas' NHS Foundation Trust, London, UK; ³Department of Obstetrics and Gynecology, Cleveland Clinic, Cleveland, OH; ⁴*current location: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh; ⁵Gynecologic Oncology, National Cancer Center Korea, Govang-si, Gyeonggi-do, Republic of Korea, Korea, Republic of: ⁶Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy; ⁷Department of Gynecologic Oncology, Northwest Cancer Specialists PC, Vancouver, WA; ⁸Department of Cancer and Blood, Auckland City Hospital, Auckland, New Zealand; ⁹Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Alexandra Hospital, Athens, Greece; ¹⁰Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT; ¹¹Department of Obstetrics-Gynaecology, Centre hospitalier de l'Université de Montréal (CHUM), Institut du cancer de Montréal, Montréal, OC, Canada; ¹²Gynecologic Oncology Department, Medical Faculty, Istanbul University, Cerrahpaşa, Istanbul, Turkey; ¹³Arizona Center for Cancer Care, University of Arizona College of Medicine, Creighton University School of Medicine, Phoenix, AZ; 14Department of Gynaecological Surgery and Gynecological Oncology for Adults and Adolescents, Pomeranian Medical University, Szczecin, Poland; 15 Department of Gynecologic Oncology, University of Cincinnati, University of Cincinnati Cancer Center, Cincinnati, OH; 16 Gynecology-Oncology Department, Meir Medical Center, Kfar-Saba, Israel; ¹⁷Department of Gynecologic Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH; ¹⁸Department of Surgery and Cancer, Imperial College London, London, UK; ¹⁹Molecular Diagnostics, Clovis Oncology, Inc., Boulder, CO; ²⁰GOG Foundation, HonorHealth Research Institute, University of Arizona College of Medicine, Creighton University School of Medicine, 10.1136/ijqc-2022-ESGO.1018 Introduction In ATHENA-MONO, first-line (1L) maintenance treatment with rucaparib improved progression-free survival (PFS) versus placebo in patients with ovarian cancer (OC), regardless of molecular characteristics (Monk et al. I Clin Oncol. 2022). This exploratory analysis evaluated the PFS benefit of 1L maintenance rucaparib in subgroups defined by genomic biomarkers of homologous recombination deficiency, including homologous recombination repair (HRR) gene mutations, zygosity, and germline/somatic status. Methods Patients with high-grade OC who underwent cytoreductive surgery and completed 1L platinum-doublet chemotherapy with a partial or complete response were randomised 4:1 to oral rucaparib 600 mg BID or placebo. Mutations in BRCA1, BRCA2, and 28 other genes in the HRR pathway (Coleman et al. Lancet. 2018), and zygosity status, were identified via next-generation sequencing of tumor tissues (Foundation Medicine). BRCA germline/ somatic status were determined by germline sequencing (Ambry Genetics). The primary endpoint was investigatorassessed PFS per RECIST. Results Deleterious mutations in BRCA1 and BRCA2 were detected in 13.9% (75/538) and 7.4% (40/538) of patients, respectively. PFS was longer with rucaparib compared with placebo in both BRCA1 (HR=0.39; 95% CI=0.14-1.08) and BRCA2 (HR=0.46; 95% CI=0.13-1.69) subgroups. Rucaparib PFS benefit was observed regardless of BRCA mutation type: short variants (frameshift, nonsense, splice site, missense) or large structural events (homozygous deletions, large rearrangements). BRCA mutations were further classified by germline (12.6%; 68/538), somatic (6.1%; 33/538), or unknown (2.6%; 14/538). PFS was longer with rucaparib compared with placebo in germline (HR=0.33; 95% CI=0.10-1.12) and somatic (HR=0.65; 95% CI=0.18-2.39) BRCA subgroups. Deleterious mutations in non-BRCA HRR genes were detected in 11.2% (60/538) of patients, with a PFS benefit of rucaparib versus placebo (HR=0.59; 95% CI=0.24-1.43). Conclusions Exploratory biomarker analyses confirmed benefit with 1L maintenance rucaparib in patients with advanced OC harbouring different types of deleterious mutations in BRCA and non-BRCA HRR genes. 2022-LBA-414-ESGO PRELIMINARY CLINICAL OUTCOME OF ADP-A2M4CD8, A NEXT-GENERATION **AUTOLOGOUS T-CELL RECEPTOR T-CELL** THERAPY, IN PATIENTS WITH ADVANCED **EPITHELIAL OVARIAN CANCER** ¹Kathleen Moore, ¹Adam Asch, ²Victor Moreno, ³Emiliano Calvo, ⁴Marcus Butler, ⁵Jon Zugazagoitia, ⁶David Hong, ⁷Ahmed Galal, ²Lorena Ostios, ³Maria de Miguel, ⁸Quan Lin, ⁸Thejo Annareddy, ⁸Francine Brophy, ⁸Marisa Rosenberg, ⁸Theresa Seiders, ⁹Revashnee Naidoo, ⁹Natalie Bath, ⁹Jose Saro, ⁸Elliot Norry, ⁷Jeffrey Clarke. ¹OU Health Stephenson Cancer Center, Oklahoma City, OK; ²START Madrid-FJD, Madrid, Spain; ³START Madrid-CIOCC, Madrid, Spain; ⁴Princess Margaret Cancer Centre, Toronto, ON, Canada; ⁵Hopital Universitario 12 de Octubre, Madrid, Spain; ⁶MD Anderson Cancer Center, Houston, TX; ⁷Duke Cancer Center, Durham, NC; ⁸Adaptimmune, Philadelphia, PA; ⁹Adaptimmune, Abingdon, Oxfordshire, UK 10.1136/ijgc-2022-ESGO.1019 Introduction ADP-A2M4CD8, a next-generation specific peptide enhanced affinity receptor (SPEAR) T-cell therapy supplemented with a CD8α co-receptor, is being evaluated in the Phase 1 SURPASS trial (NCT04044859) in multiple solid tumours, including ovarian cancer. Promising anti-tumour activity, including a 36% overall response rate (1 complete response [CR], 7 partial responses [PR] in 22 evaluable patients; 2 August 2021 data cut-off) and a favourable benefit to risk profile were reported. We report preliminary antitumour activity in ovarian cancer and updated safety in all tumours. Methods SURPASS is a first-in-human trial evaluating ADP-A2M4CD8 using a modified 3+3 design, with 2 dose cohorts and an expansion cohort. T-cells are collected by leukapheresis, transduced, and infused into the patient after lymphodepletion. Eligible patients express human leukocyte antigen A*02 with melanoma-associated antigen (MAGE)-A4-positive tumours. Patients with ovarian cancer must have received platinum-based chemotherapy and progressed ≤12 months post platinum therapy. Results As of 1 August 2022, 14 patients with ovarian cancer had received 1.14-9.95×10⁹ transduced T-cells. Median age was 59 years (range, 40-75); median number of prior systemic therapy regimens was 4 (range, 2-8); median MAGE-A4 expression H-score was 237.5 (range, 95-300). Adverse events in the overall population were consistent with lymphodepletion chemotherapy or cellular therapy; similar safety results were seen in the ovarian cancer subgroup (table 1). There was 1 Grade 5 cytokine release syndrome. Best overall responses were 1 CR, 4 PR, 6 stable disease (SD), 2 progressive disease and 1 not evaluable, giving a 36% overall response rate and a 79% disease control rate (CR+PR+SD, figure 1). | Preferred term | Serious AEs
in ≥5% of
patients
overall,
N=44 | Serious AEs
related to T-
cell infusion
in ≥5% of
patients
overall, N=44 | Serious AEs in
patients with
ovarian cancer,
N=14 | Serious AEs
related to T-
cell infusion in
patients with
ovarian
cancer, N=14 | |---|--|---|--|--| | | | | | | | Cytokine release
syndrome (CRS) | 14 (31.8) | 14 (31.8) | 7 (50.0)
[including 1
grade 5 event in
a 60-year-old
with large tumor
burden in lungs
and previous lung
radiotherapy.
Cause of death:
pneumonia and
CRS] | 7 (50.0) | | Нурохіа | 3 (6.8) | 3 (6.8) | 3 (21.4) | 3 (21.4) | | Immune effector
cell-associated
neurotoxicity
syndrome | 3 (6.8) | 3 (6.8) | 1 (7.1) | 1 (7.1) | | Pyrexia | 3 (6.8) | 2 (4.5) | 2 (14.3) | 2 (14.3) | | Preferred term | AEs related | AEs related | | | | | to T-cell | to T-cell | | | | | infusion in | infusion in | | | | | ≥12% of | patients with | | | | | overall, | ovarian
cancer, N=14 | | | | Any AE | N=44 | 14 (100.0) | | | | Cytokine release | 40 (90.9)
32 (72.7) | 14 (100.0)
11 (78.6) | | | | syndrome | | , , | | | | Neutropenia/
neutrophil count
decreased | 13 (29.5) | 4 (28.6) | | | | Anemia/RBC
decreased | 10 (22.7) | 3 (21.4) | | | | Pyrexia | 10 (22.7) | 5 (35.7) | | | | Fatigue | 9 (20.5) | 4 (28.6) | | | | Leukopenia/WBC
decreased | 7 (15.9) | 2 (14.3) | | | | Rash | 7 (15.9) | 3 (21.4) | | | | Thrombocytopenia/ platelet count | 7 (15.9) | 2 (14.3) | | | | decreased | c (42.c) | 2 (24 4) | | | | Dyspnoea | 6 (13.6) | 3 (21.4) | | | | Hypoxia
Immune effector | 6 (13.6)
6 (13.6) | 3 (21.4)
1 (7.1) | | | | cell-associated neurotoxicity syndrome | 0 (13.0) | 1 (7.1) | | | | Pleural effusion | 6 (13.6) | 1 (7.1) | | | Maximum percentage change in sum of diameters through progressive disease (inclusive) or prior to surgical resection (n=13, excluding 1 patient with a best overall response of not evaluable) Tumour type=Ovarian Abstract 2022-LBA-414-ESGO Figure 1 Conclusions ADP-A2M4CD8 SPEAR T-cell therapy showed preliminary anti-tumour activity in heavily pre-treated patients with MAGE-A4+ advanced ovarian cancer, with tolerable emerging safety results. The trial now includes an anti-programmed death-ligand 1 combination treatment cohort. 1. Hong DS, et al. Ann Oncol. 2021;32(suppl5):540P. ## 2022-LBA-677-ESGO DISTRIBUTION AND PROGNOSTIC ROLE OF **BRCA STATUS IN ELDERLY OVARIAN CANCER PATIENTS** ¹Lucia Tortorella, ¹Serena Cappuccio, ¹Claudia Marchetti, ¹Barbara Costantini, ¹Diana Giannarelli, ²Giuseppe Vizzielli, ¹Tina Pasciuto, ³Domenica Lorusso, ³Giovanni Scambia, ³Anna Fagotti, ¹Fondazione Policlinico Gemelli IRCCS, Roma, Italy: ²University Hospital of Udine, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy; ³Fondazione Policlinico Gemelli IRCCS, Università Cattolica del Sacro Cuore., Roma, Italy 10.1136/ijqc-2022-ESGO.1020 Introduction Elderly patients with advanced ovarian cancer often receive suboptimal treatment with less radical surgery, due to the complexity and risks of primary debulking surgery (PDS). We know that complete resection is the most important independent factor affecting survival. There is an emerging role of BRCA status. BRCA mut patients are more chemosensitive while BRCA wt could better benefit of PDS. In this context it's important to evaluate the distribution of BRCA status in elderly patients and if its prognostic role is still maintained in this subgroup of patients. Methods This is a retrospective single institution study evaluating patients with known germinal/somatic BRCA status. We are comparing clinical and surgical characteristics according to age groups. We are evaluating the prevalence of BRCA mut in the age groups, how it affects survival and chemosensitivity in order to understand if in elderly patients its prognostic role is still maintained Results A total of 2089 patients were included in the analysis. Mean age of BRCAmut was 55.8 (SD=10.9) and 60.3 (SD=12) for BRCAwt (p<0.0001). The rate of BRCAmut decreases over age-range (figure 1). 1850 patients were stage IIIC-IV and older women were less likely submitted to PDS (from 62.1% for <50 y to 23.4% for \ge 80 y), however the rate of complete resection was superimposable in all age