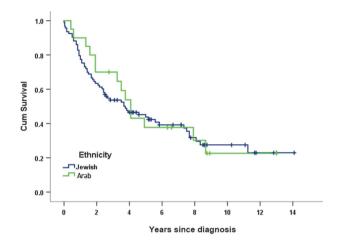
2022-RA-1336-ESGO DIFFERENCES IN EPIDEMIOLOGY, CLINICAL FEATURES AND PROGNOSIS OF EOC IN ARAB WOMEN AS COMPARED WITH JEWISH WOMEN IN NORTHERN ISRAEL

¹Inbar Ben Shachar, ¹Roni Plaschkes, ^{2,3}Jamal Zidan, ⁴Ilan Atlas. ¹ObandGyn, Ziv, Safed, Israel; ²Oncology, Ziv, Safed, Israel; ³Poria, Poria, Israel; ⁴ObandGyn, Poria, Poria, Israel

10.1136/ijgc-2022-ESGO.694

Introduction/Background Epithelial ovarian cancer (EOC) is the most fatal gynecological cancer, affecting various ethnic groups differently. We compared between women from Israel's two major ethnic groups, Arabs and Jews, in order to determine whether significant differences in EOC characteristics existed.


Methodology The data consist of records of 122 women (24 Arabs and 98 Jews) with EOC who were treated in northern Israel between 2005 and 2017 and include the following: age at diagnosis, disease stage, histological type, histological grade, BRCA mutations, and prognosis.

Results Arab patients were diagnosed at a younger age compared with Jewish patients (60.0 years vs. 65.5 years, respectively; p = 0.050). Stage III-IV disease was found among 78.3% in Arabs and 79.1% in Jews (p = 0.928). Serous tumors were most common in both groups (75% of Arabs and 74.1% of Jews; p = 0.649). Of only four (16.6%) Arab women who were tested for BRCA mutations, two were found positive, while of 47 (47.9%) Jewish women who were tested, 23.4% were found with a mutation. Overall survival was similar in the two groups (5.8 years in Arabs vs. 5.9 years in Jews), but Arab patients died at a younger age compared with Jewish patients (65.9 years vs. 71.4 years, respectively: p = 0.089).

Abstract 2022-RA-1336-ESGO Table 1 Clinical characteristics of EOC by ethnicity

Characteristics	Jews (N = 98)		Arab (N = 24)		
	N	%	N	%	P
Patients' characteristics					
Age at diagnosis (y) (M±SD)	65.5±12.2		60.0±12.	1	0.050
Age at menopause (y) (M±SD)	50.5±5.2		48.0±4.5		0.104
Childbirths (M±SD)	2.9±2.1		4.2±3.9		0.119
BMI (Kg/h ²) (M±SD)*	27.7±6.3		29.2±5.7		0.296
History of breast cancer	9	9.2	1	4.1	0.68
Family history of breast or ovarian cancer*	17	17.8	1	4.3	0.267
Age at diagnosis (y) (M±SD)	65.5±12.2		60.0±12.1		0.050
Genetics [†]					
BRCA1	8	17.0	1	25.0	0.998
BRCA2	3	6.4	1	25.0	0.286
Disease characteristics					
Summary of stage*					0.928
I-II	19	20.9	5	21.7	
III-IV	72	79.1	18	78.3	
Histology*					0.649
Serous (including clear cell)	69	74.1	18	75	
Non-serous (endometrioid, mucinous, unclassified adenocarcinoma)	24	25.8	6	25	
Prognosis					
Recurrence*	47	73.4	13	68.4	0.668
Estimated PFS (m) (M±SD)	15.2±19.6		11.0±43.0		0.309
Last status: dead*	40	62.5	9	69.2	0.646
Age at death: (y) (M±SD)*	71.4±10.5		65.9±12.	0	0.089

Among patients who underwent genetic testing (4 Arab, 47 Jews).

Mean (95% CI) year of survival:

Jewish: 5.9 (4.7-7.0) Arab: 5.8 (3.8-7.9)

Abstract 2022-RA-1336-ESGO Figure 1 Overall survival of study population by ethnicity

Conclusion The only significant difference observed was the vounger age of diagnosis among the Arab patients. Only a small percentage of the Arab population underwent genetic screening during the study period, but new health ministry regulations will expand screening to all populations.

2022-RA-1347-ESGO

THE IMPACT OF THE INDUCTION OF ANAESTHESIA AND THE OPENING OF THE ABDOMINAL CAVITY ON HAEMODYNAMIC PARAMETERS IN CYTOREDUCTIVE **DEBULKING SURGERY**

¹Charlotte Middel, ¹Matthias Stetzuhn, ¹Nadine Sander, ¹Björn Kalkbrenner, ²Timo Tigges, ²Alexandru-Gabriel Pielmus, ¹Claudia Spies, ³Klaus Pietzner, ²Michael Klum, ¹Clarissa von Haefen, ¹Oliver Hunsicker, ³Jalid Sehouli, ⁴Frank Konietschke, ^{5,1}Aarne Feldheiser. ¹Department of Anaesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; ²Department of Electronics and Medical Signal Processing, Technical University, Berlin, Germany; ³Department of Gynecology with Center for Oncological Surgery, Campus Virchow Klinikum, Charité – Universitätsmedizin Berlin, Berlin, Germany; ⁴Institute of Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; ⁵Department of Anaesthesiology and Intensive Care Medicine, Evangelische Kliniken Essen-Mitte, Essen, Germany

10.1136/ijgc-2022-ESGO.695

Introduction/Background High-risk surgery frequently is associated with haemodynamic instability leading to the administration of high amounts of intravenous fluids and catecholamines to stabilize cardiovascular function. The haemodynamic instability is commonly attributed to the inflammatory response related to surgical trauma. In this study, we investigated also, how the induction of anaesthesia and the opening of the abdominal cavity impact haemodynamics.

^{*}Refers only to the patients in which the specific data was found (BMI: Jews n = 92, Arab n = 23; Family history: Jews n = 95, Arab n = 23; Stage: Jews n = 91, Arab n = 23; Histology: Jews n = 93; Recurrence Jews n = 64, Arab n = 19; Last status and Age at death: Jews n = 64, Arab n = 13).