
was 57.17 vs. 30.00 months for PC-1W and PC-3W respectively (p = 0.0075). No differences in toxicity were shown, when comparing PC-1W to PC-3W in elderly except for grade 2 alopecia – 26.21% vs. 65.18% respectively (p<0.0001), and grade 2 neuropathy – 20.19% vs. 36.61% respectively (p=0.0119)

Abstract 2022-RA-209-ESGO Figure 1

Survival Data	Under 70 N = 714	Above 70 N = 230	P Value
Survival Data	(Excluding Sta	ge I+II)	
Median OS (months)	80.07	45.14	<0.0001
Median PFS (months)	19.02	12.45	<0.0001
OS after Recurrence	32.43	15.61	<0.0001

Conclusion mOS is reduced in elderly, though better than expected, furthermore toxicity is tolerable in elderly. PC-1W was both more abundant and had better mOS in the elderly population. Therefore PC-1W regimen may offer advantages for elderly in terms of tolerance while retaining efficacy.

2022-RA-211-ESGO

EXPRESSION OF THE ANTI-ANGIOGENIC VEGF-A SPLICE VARIANT, VEGF-A₁₆₅B, AS PREDICTIVE BIOMARKER FOR BEVACIZUMAB TREATMENT IN ADVANCED OVARIAN CANCER PATIENTS

¹Pauline Wimberger, ¹Mara Julia Gerber, ²Jacobus Pfisterer, ³Susanne Füssel, ³Kati Erdmann, ¹Theresa Link, ⁴Andreas du Bois, ⁵Stefan Kommos, ⁶Jalid Sehouli, ⁷Felix Hilpert, ⁸Alexander Burges, ⁹Tjoung-Wong Park-Simon, ¹⁰Antje Belau, ¹¹Lars Hanker, ¹²Rainer Kimmig, ¹³Nikolaus de Gregorio, ¹⁴Barbara Schmalfeldt, ¹⁵Klaus Baumann, ¹⁶Willibald Schröder, ¹Jan Dominik Kuhlmann. ¹Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; ²University Hospital Kiel, Kiel, Germany; ³University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany; ⁴Kliniken Essen-Mitte (KEM), Essen, Germany; ⁵University of Tuebingen, Tübingen, Germany; ⁶Charité — Universitätsmedizin Berlin, Berlin, Germany; ⁷University Hospital Schleswig-Holstein, Kiel, Germany; ⁸University Hospital LMU Munich, München, Germany; ⁹Hannover Medical School, Hannover, Germany; ¹⁰University Hospital Greifswald, Greifswald, Germany; ¹¹University Hospital Schleswig-Holstein, Lübeck, Germany; ¹²University Hospital Essen, Essen, Germany; ¹³University Hospital Ulm, Ulm, Germany; ¹⁴University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ¹⁵University Hospital Gießen and Marburg, Marburg, Germany; ¹⁶Klinikum Bremen-Mitte, Bremen, Germany

10.1136/ijgc-2022-ESGO.484

Introduction/Background The identification of a robust immunohistochemical marker to predict the response to bevacizumab in ovarian cancer is of high clinical interest. VEGF-A, the molecular target of bevacizumab, is expressed as multiple isoforms with pro- or anti-angiogenic properties, of which VEGF-A₁₆₅b is the most dominant anti-angiogenic isoform. The balance of VEGF-A isoforms is closely related to the angiogenic capacity of a tumor and may define its vulnerability to anti-angiogenic therapy. We investigated, whether expression of VEGF-A₁₆₅b is a predictive biomarker for bevacizumab treatment in advanced ovarian cancer.

Methodology Formalin-fixed paraffin-embedded (FFPE) tissues from 413 patients of the ICON7 multicenter phase III trial, treated with standard platinum-based chemotherapy with or without bevacizumab, were probed for VEGF-A₁₆₅b expression by immunohistochemistry.

Results In patients with low VEGF- A_{165} b expression, the addition of bevacizumab to standard platinum-based chemotherapy significantly improved progression-free (HR: 0.727, 95%CI=0.538 – 0.984; p=0.039) and overall survival (HR: 0.662, 95%CI=0.458 – 0.958; p=0.029). Multivariate analysis showed that the addition of bevacizumab in low VEGF- A_{165} b expressing patients conferred significant improvements in progression-free survival (HR: 0.610, 95%CI=0.446 – 0.834; p=0.002) and overall survival (HR: 0.527, 95% CI=0.359 – 0.775; p=0.001), independently from established risk factors.

Conclusion We demonstrate for the first time that immunohistochemical expression of the anti-angiogenic VEGF-A isoform, VEGF-A₁₆₅b, is an independent predictor for bevacizumab treatment in ovarian cancer patients. We envision that this marker could be implemented into routine diagnostics in ovarian cancer and may guide clinical decisions related to bevacizumab treatment.