Result(s)* 142 patients were identified among 12 participating centers performing SLN mapping. In 64.8% of cases a lowvolume disease (≤2 mm) was found in SLNs: 33 (23.2%) ITCs and 59 (41.6%) micrometastases. Factors influencing volume of nodal metastases were: grading [p:0.002] (G1 associated with low-volume disease), LVSI [p:0.007] and MI >50% [p:0.008] (both associated with macrometastases). There were: 20 (14.1%) low-risk, 14 (9.8%) intermediate, 88 (62%) highintermediate and 20 (14.1%) high-risk according to 2020-ESGO/ESTRO/ESP risk group (on uterus). 17 (18.5%) patients with low-volume disease (8 micrometastases and 9 ITCs) did not receive any adjuvant therapy. At a mean follow-up of 34.6 months (range 1 -215) months, 21 (14.8%) relapses were recorded, only one among patients not receiving any adjuvant, none in the ESGO/ESTRO/ESP low risk group. The RFS at 2-years for the micrometastatic patients was 91%, similar to ITCs patients (79.1%), regardless of adjuvant treatment, but statistically better than patients with macrometastases (72.3%) [p: 0.026]. There was a trend to distinct RFS according to ESGO/ESTRO/ESP risk group, but none of the comparisons reached significance. The only factors affecting RFS were deep MI [p:0.03] and cervical stromal invasion [p:0.046]. Conclusion* More than half of patients with positive SLNs had low-volume disease. Grading, MI and LVSI predicted volume of nodal metastases. MI and cervical invasion affected RFS; while adjuvant treatment did not seem significantly associated with RFS in patients with low-volume disease. Longer

follow-up time and a larger sample size are needed to understand the role of adjuvant therapy in low-volume metastatic **REAL-WORLD OUTCOMES OF PATIENTS WITH** ADVANCED ENDOMETRIAL CANCER: A RETROSPECTIVE COHORT STUDY OF US ELECTRONIC HEALTH RECORDS ¹S Banerjee^{*}, ²G Smith, ¹J Lima, ³G Long, ³N Alam, ³H Nakamura, ³D Meulendijks, ²BJ Monk. ¹The Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, UK; ²University of Arizona College of Medicine, Creighton University School of Medicine at St Joseph's Hospital, Phoenix, USA; ³AstraZeneca Pharmaceuticals LP, Introduction/Background* Endometrial cancer (EC) is the most common gynaecological malignancy in the USA, and mortality from advanced/metastatic EC (AEC) is increasing. EC constitutes a heterogeneous group of diseases with distinct histological subtypes. We characterized the prognosis in routine clinical practice of women with uterine serous carcinoma (USC), endometrioid carcinoma, clear-cell carcinoma (CCC), carcino-

sarcoma, and EC not otherwise specified. Methodology This retrospective study utilized electronic health records from the US Flatiron database, comprising structured and unstructured data from community and academic centres.

		All patients (N=2202)	Uterine serous carcinoma (n=551)	Endometrioid carcinoma (n=1317)	Clear-cell carcinoma (n=92)	Carcino- sarcoma (n=30)	EC not otherwise specified (n=212)
Median age at advanced diagnosis, years (interquartile range)		66.0 (59.0–72.0)	69.0 (64.0–74.0)	64.0 (56.0–70.0)	68.5 (60.5–74.0)	71.5 (63.0–76.0)	65.5 (59.5–72.5)
Race/ethnicity, n (%)	Asian	48 (2.2)	10 (1.8)	32 (2.4)	1 (1.1)	1 (3.3)	4 (1.9)
	Black/African American	318 (14.4)	145 (26.3)	124 (9.4)	16 (17.4)	3 (10.0)	30 (14.2)
	Hispanic/Latino	3 (0.1)	0 (0.0)	2 (0.2)	1 (1.1)	0	0
	White	1401 (63.6)	309 (56.1)	886 (67.3)	60 (65.2)	16 (53.3)	130 (61.3)
	Other	233 (10.6)	49 (8.9)	142 (10.8)	10 (10.9)	7 (23.3)	25 (11.8)
	Unknown	199 (9.0)	38 (6.9)	131 (10.0)	4 (4.4)	3 (10.0)	23 (10.9)
ECOG score at advanced diagnosis, n (%)	0	1125 (51.1)	275 (49.9)	681 (51.7)	51 (55.4)	11 (36.7)	107 (50.5)
	1	539 (24.5)	136 (24.7)	333 (25.3)	16 (17.4)	10 (33.3)	44 (20.8)
	2	126 (5.7)	27 (4.9)	77 (5.9)	9 (9.8)	3 (10.0)	10 (4.7)
	Unknown	412 (18.7)	113 (20.5)	226 (17.2)	16 (17.4)	6 (20.0)	51 (24.1)
Stage at initial diagnosis, n (%)	1	407 (18.5)	82 (14.9)	290 (22.0)	8 (8.7)	3 (10.0)	24 (11.3)
	Ш	66 (3.0)	18 (3.3)	39 (3.0)	6 (6.5)	0	3 (1.4)
	Ш	1073 (48.7)	253 (45.9)	700 (53.2)	45 (48.9)	14 (46.7)	61 (28.8)
	IV	557 (25.3)	185 (33.6)	239 (18.1)	31 (33.7)	11 (36.7)	91 (42.9)
	Unknown	99 (4.5)	13 (2.4)	49 (3.7)	2 (2.2)	2 (6.7)	33 (15.6)
Health practice setting, n (%)	Academic	380 (17.3)	113 (20.5)	212 (16.1)	20 (21.7)	3 (10.0)	32 (15.1)
	Community	1822 (82.7)	438 (79.5)	1105 (83.9)	72 (78.3)	27 (90.0)	180 (84.9)

SLNs.

271

Cambridge, UK

10.1136/ijqc-2021-ESGO.130

A 274 Table 4 Detient damentariati

		All patients (N=2169*)	Uterine serous carcinoma (n=536)	Endometrioid carcinoma (n=1307)	Clear-cell carcinoma (n=87)	Carcino- sarcoma (n=29)	EC not otherwise specified (n=210)
os†	Median OS (95% CI), months	49.6 (43.9–52.0)	31.3 (27.7–34.3)	70.8 (60.5–83.2)	29.2 (18.3–57.0)	14.4 (7.9–53.1)	40.7 (21.4–48.1
	Interquartile range for median OS, months	18.1-89.5	15.4–61.8	28.4-NE	16.1–NE	6.8–53.1	8.2-NE
	Patients with event, n	798	254	394	38	16	96
	Censored patients, n	1371	282	913	49	13	114
	Median follow-up (95% CI), months	33.0 (30.6–35.0)	32.2 (26.1–36.3)	33.7 (31.0–35.6)	30.4 (22.2–33.9)	24.1 (12.0–33.0)	35.6 (26.8–43.3
	Interquartile range for median follow-up, months	14.9–52.0	14.5–51.6	24.8-NE	16.1–NE	12.0-33.0	8.2-NE
TFST	Median TFST (95% CI), months	13.6 (12.1–15.0)	10.6 (9.6–12.3)	18.9 (15.8–21.7)	10.8 (7.7–16.3)	9.6 (6.7–20.2)	8.3 (6.0–10.7)
	Interquartile range for median TFST, months	4.9-70.8	5.3–25.3	5.1-87.9	3.9-22.4	5.8–37.5	3.8–46.7
	Patients with event, n	1297	381	697	60	19	140
	Censored patients, n	872	155	610	27	10	70
	Median follow-up (95% CI), months	34.0 (31.2–36.7)	37.8 (34.4–40.6)	31.7 (29.5–35.0)	30.6 (22.2–51.4)	25.7 (12.0–86.8)	42.3 (31.7–45.7
	Interquartile range for median follow-up, months	15.4–52.4	16.5–57.2	14.5–51.8	21.4-52.8	12.0-86.8	19.2–58.9

272

Abstract 271 Table 2 Median OS and TFST from initiation of system treatment for recurrent/metastatic disease after advanced diagnosis

Women aged \geq 18 years diagnosed with AEC (initial diagnosis: stage III/IV, or early stage with subsequent locoregional/distal recurrence) between 1 January 2013 and 30 September 2020, inclusive, were eligible provided they received platinum-based chemotherapy at any time following diagnosis and had \geq 2 clinical visits. Patients were followed up from initiation of systemic treatment for recurrent/metastatic disease after advanced diagnosis until 31 March 2021, last available follow-up, or death (whichever occurred first). Overall survival (OS) and time to first subsequent therapy or death (TFST) were estimated with Kaplan-Meier methodology.

Result(s)* Overall, 2202 women with AEC were included; most (82.7%) were treated in a community setting and presented with stage III/IV disease at initial diagnosis (74.0%; table 1). Compared with other subtypes, a higher proportion (26.3%) of women with USC were Black/African American. Thirty-three (1.5%) patients did not have recorded therapy following AEC diagnosis. The most common first systemic treatments for recurrent/metastatic disease were platinumbased combination chemotherapy (82.0%), platinum-based single-agent chemotherapy (7.9%), and platinum-based chemotherapy plus HER2-targeted therapy (2.9%); median (interquartile range) duration was 9.2 (4.1-23.2) months. Median (95% confidence interval [CI]) OS from initiation of first systemic treatment was shorter in patients with USC (31.3 [27.7-34.3] months), CCC (29.2 [18.3-57.0] months), and carcinosarcoma (14.4 [7.9-53.1] months) versus the overall population (49.6 [43.9-52.0] months; table 2), as was median TFST from initiation of first systemic treatment (table 2).

Conclusion* In this large real-world study, patients with advanced USC, CCC, and carcinosarcoma had poorer survival outcomes than the overall AEC population, demonstrating an unmet need in these populations, such as the requirement for more effective therapies.

DOSTARLIMAB IN ADVANCED/RECURRENT MISMATCH REPAIR DEFICIENT/MICROSATELLITE INSTABILITY HIGH OR PROFICIENT/STABLE ENDOMETRIAL CANCER: THE GARNET STUDY

¹A Oaknin*, ²L Gilbert, ³AV Tinker, ⁴J Brown, ⁵C Mathews, ⁶J Press, ⁷R Sabatier, ⁸DM O'malley, ⁹V Samouëlian, ¹⁰V Boni, ¹¹L Duska, ¹²S Ghamande, ¹³P Ghatage, ¹⁴R Kristeleit, ¹⁵C Leath, ¹⁶J Veneris, ¹⁶T Duan, ¹⁶E Im, ¹⁷B Pothuri. ¹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ²McGill University Health Centre Research Institute, Montreal, Quebec, Canada; ³BC Cancer, Vancouver, British Columbia, Canada; ⁴Division of Gynecologic Oncology, Levine Cancer Institute, Atrium Health, Charlotte, NC, USA; ⁵Women and Infants Hospital of Rhode Island, Providence, RI, USA; ⁶Swedish Cancer Institute Gynecologic Oncology and Pelvic Surgery, Seattle, WA, USA; ⁷Department of Medical Oncology, Institut Paoli Calmettes, Aix-Marseille University, Marseille, France; ⁸The Ohio State University – James Comprehensive Cancer Center, Columbus, OH, USA; ⁹Gynecologic Oncology Service, Department of Obstetrics and Gynecology, CHUM, Université de Montréal, Montreal, Quebec, Canada; ¹⁰START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain; ¹¹Emily Couric Clinical Cancer Center, University of Virginia, Charlottesville, VA, USA; ¹²Georgia Cancer Center, Augusta University, Augusta, GA, USA; ¹³Department of Gynecological Oncology, University of Calgary, Calgary, Alberta, Canada; ¹⁴Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK; ¹⁵O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; ¹⁶GlaxoSmithKline, Waltham, MA, USA; ¹⁷New York University, Department of Obstetrics and Gynecology, NYU Langone Health, Perlmutter Cancer Center, New York, NY, USA

10.1136/ijgc-2021-ESGO.131

Introduction/Background* Dostarlimab is a humanised programmed death (PD-1) receptor monoclonal antibody approved for patients with mismatch mutation repair-deficient/microsatellite instability-high (dMMR/MSI-H) recurrent or advanced endometrial cancer (EC) that progressed on or after a platinum-based chemotherapy regimen. GARNET is a phase 1 study assessing the antitumour activity and safety of dostarlimab monotherapy in patients with advanced solid tumours.