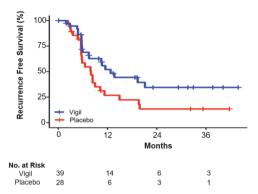

A RFS (PP) from time of randomization

	Number of events / patients	Median RFS in mo
Vigil	25 / 46 (54%)	12.7
Placebo	34 / 45 (76%)	8.4


Stratified HR for recurrence or death 0.67, 90% CI [0.432 to 1.042], one-sided p 0.065

B RFS (BRCAwt) from time of randomization

	Number of events / patients	Median RFS in mo
Vigil	20 / 39 (51%)	12.7
Placebo	22 / 28 (79%)	8.0

Stratified HR for recurrence or death 0.493, 90% CI [0.287 to 0.846], one-sided p 0.014

Abstract 15 Figure 1 RFS from randomization. (A) RFS of all PP. (B) RFS of BRCA1/2-wt population

Conclusion Vigil immunotherapy as 1L maintenance in Stage III/IV ovarian cancer is well tolerated and showed significant RFS clinical benefit, particularly in BRCA1/2-wt disease.

IGCS20_1101

16

QUALITY-ADJUSTED (QA) PROGRESSION-FREE SURVIVAL ANALYSES OF VELIPARIB + CARBOPLATIN/PACLITAXEL (CP) VS CP ALONE IN PATIENTS WITH NEWLY DIAGNOSED OVARIAN CANCER

¹A Alvarez Secord*, ²M Bookman, ³R Coleman, ⁴M Dinh, ⁴N Khandelwal, ⁴K Benjamin, ⁴R Kamalakar, ⁴D Sullivan, ⁵D Cella. ¹Department of Obstetrics and Gynecology, Duke University School of Medicine, Duke Cancer Institute, USA; ²Department of Medicine, University of Arizona Health Sciences, USA; ³Department of Gynecologic Oncology and Reproductive Medicine, Division of Surgery, MD Anderson Cancer Center, USA; ⁴Abbvie Inc, USA; ⁵Department of Medical Social Sciences, Northwestern University, USA

10.1136/ijqc-2020-IGCS.16

Objective Veliparib, a poly (ADP-ribose) polymerase inhibitor, was evaluated in a Phase 3 trial (VELIA, NCT02470585) among patients with newly diagnosed stage III/IV high-grade serous epithelial ovarian/fallopian tube/primary peritoneal cancer. VELIA examined veliparib added to CP followed by veliparib maintenance compared to placebo added to CP followed by placebo maintenance. This analysis compared QA progression-free survival among patients enrolled in VELIA.

Methods Patient-centered outcomes were assessed in 344 Veliparib+ CP and 351 CP alone subjects. Progression-free survival (PFS) time was partitioned into two health states: time with toxicity (Tox) and time without Tox. Tox included three clinically meaningful adverse events (AEs) including nausea, vomiting and fatigue. QA-PFS was assessed for duration of good quality of life, incorporating PFS and health states. Q-TWiST (QA time without disease symptoms or treatment Tox) was calculated as utility-weighted sums of mean health state durations. Sensitivity analyses were conducted utilizing Grade 2+ or Grade 3+ AEs. Similar analyses were conducted on HRD and BRCA-deficient subgroups.

Results A significant difference in mean QA-PFS was seen in favor of Vel throughout compared to CP alone (19.5

months vs 16.5 months; 95% CI 1.42, 4.61; p<0.0001). Mean Q-TWiST was longer for patients in Vel throughout arm compared to CP alone (20.82 months vs 18.06 months; 95% CI 1.09, 4.47; p<0.001). Similar differences in mean Q-TWiST were observed for sensitivity and subgroup analyses.

Conclusion Compared to CP alone, Veliparib added to CP and continued as maintenance had significant patient-centered benefits in terms of OA-PFS and on-treatment O-TWiST.

IGCS20_1131

17

SAFETY AND PATIENT-REPORTED OUTCOMES IN PATIENTS RECEIVING NIRAPARIB IN THE PRIMA/ENGOT-OV26/GOG-3012 TRIAL

¹G Freyer*, ²B Pothuri, ³S Han, ⁴D Chase, ⁴B Monk, ⁵F Heitz, ⁶R Burger, ⁷L Gaba, ⁸L Van Le, ⁹E Guerra, ¹⁰D Bender, ¹¹J Korach, ¹²N Cloven, ¹³C Churruca, ¹⁴P Follana, ¹⁵P DiSilvestro, ¹⁶JF Baurain, ¹⁷K Jardon, ¹⁸C Pisano, ¹⁹U Peen, ²⁰J Maenpaa, ²¹P Hoskins, ²²E Bacque, ²²Y Li, ²²L Eliason, ²³A González-Martín. ¹Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens and Service d'Oncologie Médicale, Centre Hospitalier Lyon-Sud, France; ²Gynecologic Oncology Group (GOG) and the Department of Obstetrics/ Gynecology, Perlmutter Cancer Center, NYU Langone Health, USA; ³Department of Obstetrics and Gynecology, University Hospitals Leuven, Belgium; ⁴Arizona Oncology (US Oncology Network), University of Arizona College of Medicine, USA; 5Department for Gynecology and Gynecologic Oncology, Kliniken Essen-Mitte, Germany; ⁶University of Pennsylvania, USA; ⁷Medical Oncology Department, Hospital Clinic de Barcelona, Spain; ⁸Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, USA; ⁹Medical Oncology Department, Breast and Gynecological Cancer Unit, Hospital Ramon y Cajal, USA; 10 Department of Obstetrics and Gynecology, University of Iowa, USA; 11 Department of Gynecologic Oncology, Chaim Sheba Medical Center, Israel; 12 Texas Oncology, USA; 13 Hospital Universitario Donostia, Spain; ¹⁴GINECO and Centre Antoine Lacassagne, France; ¹⁵Department of Obstetrics and Gynecology, Women and Infants Hospital/Alpert School of Medicine at Brown University, USA; ¹⁶Université Catholique de Louvain and Cliniques Universitaires Saint-Luc, Belgium; ¹⁷Department of Obstetrics and Gynecology, McGill University, Canada; ¹⁸Department of Urology and Gynecology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Italy; ¹⁹Herlev University Hospital, Denmark; ²⁰Tampere University Central Hospital, Finland; ²¹British Columbia Cancer Agency, Vancouver Centre, Medical Oncology, Canada; ²²GlaxoSmithKline, USA; ²³Grupo Español de Investigación en Cáncer de Ovario (GEICO) and Medical Oncology Department, Clínica Universidad de Navarra, Spain

10.1136/ijgc-2020-IGCS.17

Abstract 17 Table 1

	Niraparib		Placebo	
	FSD	ISD	FSD	ISD
Grade ≥3 TEAE, n (%)	n=315	n=169	n=158	n=86
Thrombocytopenia event	152 (48)	36 (21)	0	1 (1)
Anemia event	112 (36)	38 (22)	3 (2)	1 (1)
Neutropenia event	75 (24)	25 (15)	2 (1)	1 (1)

Introduction Niraparib is a poly(ADP-ribose) polymerase inhibitor approved for treatment in heavily pretreated patients and maintenance of patients with newly diagnosed or recurrent ovarian cancer following a response to platinum-based chemotherapy. Here we report safety and patient-reported outcomes (PROs) in the overall population and subgroups from PRIMA/ENGOT-OV26/GOG-3012 (NCT02655016).

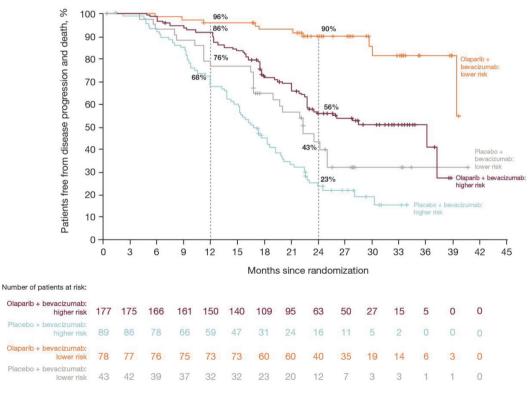
Methods This double-blind, placebo-controlled, phase 3 study randomized 733 patients. Patients received a 300-mg QD fixed starting dose (FSD) of niraparib or placebo for 36 months or until progression/toxicity. A protocol amendment introduced an individualized starting dose (ISD): 200 mg in patients with body weight <77 kg or platelets <150,000/μL, or 300 mg in all others. The primary endpoint was PFS; safety and PROs were secondary endpoints. Safety data were collected at each visit and graded using CTCAE v4.03. PRO instruments (FOSI, EQ-5D-5L, EORTC-QLQ-C30, and EORTC-QLQ-OV28) were collected Q8W for 56 weeks, then Q12W while a patient received treatment.

Results In the overall population, the most common grade ≥ 3 treatment-emergent adverse events (TEAEs) were hematologic (table 1). In patients receiving ISD, these TEAEs decreased. No treatment-related deaths occurred. PRO analysis showed

no difference in niraparib-treated patients versus placebo in the overall population or in the homologous recombination deficient, homologous recombination proficient, FSD, and ISD subgroups.

Conclusions ISD incorporation improved the safety profile of niraparib without compromising efficacy. Niraparib was well tolerated, with similar PRO scores across the treatment period. Hematologic toxicities were manageable through implementation of dose interruptions and reductions.

Funding GlaxoSmithKline NCT: NCT02655016


IGCS20_1207

18

EFFICACY OF MAINTENANCE OLAPARIB PLUS BEVACIZUMAB BY BIOMARKER STATUS IN CLINICAL HIGHER- AND LOWER-RISK PATIENTS WITH NEWLY DIAGNOSED, ADVANCED OVARIAN CANCER IN THE PAOLA-1 TRIAL

¹P. Harter*, ²D. Petran, ³G. Scambia, ⁴E. Ortega, ⁵I. Tsibulak, ⁶S. Nagao, ⁷I. Vergote, ⁸J. Meunier, ⁹F. Priou, ¹⁰R. Sverdlin, ¹¹T. Milenkova, ¹²I. Ray-Coquard, ¹²I. Ray-Coquard. ¹Kliniken Essen Mitte, and AGO, Germany; ²Centre Hospitalier Mont de Marsan, and GINECO, France; ³Fondazione Policlinico Universitario A. Gemelli IRCCS Università Cattolica, and MITO, Italy; ⁴Hospital Universitari Arnau de Vilanova, Spain; ⁵Medical University of Innsbruck, and AGO-Austria, Austria; ⁶Hyogo Cancer Center, and GOTIC, Japan; ⁷University Hospital Leuven, Leuven Cancer Institute, and BGOG, Belgium; ⁸Centre Hospitalier Régional d'Orléans, and GINECO, France; ⁹Centre Hospitalier Départemental Les Oudairies, and GINECO, France; ¹⁰GH Saint Joseph, and GINECO, France; ¹¹Centre Paul Strauss, and GINECO, France; ¹²AstraZeneca, UK

10.1136/ijqc-2020-IGCS.18

*HRD-positive defined as a tumour BRCAm and/or genomic instability score of ≥42. BRCAm, BRCA mutation; HRD, homologous recombination deficiency; PFS, progression-free survival

Abstract 18 Figure 1 Kaplan-Meier estimates of investigator-assessed PFS in higher-risk and lower-risk HRD-positive patients*